首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解, 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组 有3个线性无关的解, 证明方程组系数矩阵A的秩r(A)=2;
admin
2016-05-31
61
问题
已知非齐次线性方程组
有3个线性无关的解,
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设α
1
,α
2
,α
3
是方程组Ax=β的3个线性无关的解,其中 [*] 则有A(α
1
-α
2
)=0,A(α
1
-α
3
)=0. 因此α
1
-α
2
,α
1
-α
3
是对应齐次线性方程组Ax=0的解,且线性无关,(否则,易推出α
1
,α
2
,α
1
-α
3
线性相关,矛盾). 所以n-r(A)≥2,即4-r(A)≥2,那么r(A)≤2. 又矩阵A中有一个2阶子式[*]=-1≠0,所以r(A)≥2. 因此r(A)=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/p6xRFFFM
0
考研数学三
相关试题推荐
2020年4月17日,习近平总书记主持召开中央政治局会议,强调要坚持稳中求进工作总基调,指出稳是大局,必须确保疫情不反弹,稳住经济基本盘,兜住民生底线,要求在稳的基础上积极进取,在常态化疫情防控中全面推进复工复产达产,恢复正常经济社会秩序,培育壮大新的增长
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
科技创新始于技术、成于资本,这是近几十年全球科技创新一个突出的特征。科技创新创业的风险特征不同于成熟型产业经济行为,必须高度依赖资本,因为靠自身的积累和银行贷款往往是不现实的。而货币资本作为虚拟资本是每个企业的推动力和持续动力。货币资本是(
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
设λ=2是非奇异矩阵A的一个特征值,则矩阵(1/3A2)-1有一个特征值等于
随机试题
人作为猪肉绦虫的人作为微小膜壳绦虫的
男性,20岁。近2天寒战,高热,咳嗽,咳少许黏痰,带血。X线胸片右下肺大片浸润影,有支气管充气征。痰培养3次,1次有白念珠菌生长,对多种抗真菌药敏感。最可能的诊断为
新生儿破伤风一般发生在断脐后
A、牙菌斑B、服用药物C、内分泌导致的激素变化D、遗传因素E、全身疾病妊娠期龈炎的直接病因是
临产后肛查了解胎头下降程度的标志是
同一磁盘目录下的文件不能取相同的名字,因为操作系统依靠文件名来管理文件。()
证券公司申请为期货公司提供中间介绍业务资格,应当符合的条件包括()等。
解决我国民族问题的基本政策是()。
Somefindingsareissuedrecentlyaboutattendingacommunitycollege.Mostworkerswhohavea【C1】______fromacommunitycollege
A、Heoftenborrowsmoneyfromothers.B、Hehasjustreceivedhismonthlypay.C、Hecan’tpayoffhiscreditcards.D、Hehaskept
最新回复
(
0
)