首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数? (1)f(x2) (2)xf(x2) (3)x2f(x) (4)f2(x) (5)f(|x|)
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数? (1)f(x2) (2)xf(x2) (3)x2f(x) (4)f2(x) (5)f(|x|)
admin
2012-01-29
96
问题
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数?
(1)f(x
2
) (2)xf(x
2
)
(3)x
2
f(x) (4)f
2
(x)
(5)f(|x|) (6)|f(x)|
(7)f(x)+f(-x) (8)f(x)-f(-x)
选项
答案
(1)设g(x)=f(x
2
),则g(-x)=f((-x)
2
)=f(x
2
)=g(x) ∴f(x
2
)必为偶函数. (2)设g(x)=xf(x
2
),则g(-x)=(-x)f[(-x)
2
]=-xf(x
2
)=-g(x) ∴xf(x
2
)必为奇函数. (3)设g(x)=x
2
f(x),则g(-x)=(-x)
2
f(-x)=x
2
f(-x) ∵f(-x)奇偶性不能确定 ∴x
2
f(x)奇偶性不定. (4)设g(x)=f
2
(x),则g(-x)=f
2
(-x)≠f
2
(x)且f
2
(x)≠-f
2
(x) ∴f
2
(x)奇偶性不定. (5)设g(x)=f(|x|),则g(-x)=f(|x|)=f(|x|)=g(x) ∴f(| x |)必为偶函数. (6)设g(x)=|f(x)|,则g(-x)=| f(-x)|≠|f(x)|且|f(-x)|≠-|f(x)| ∴|(x)|奇偶性不定. (7)设g(x)=f(x)+f(-x),则 g(-x)=f(-x)+f[-(-x)]=f(-x)+f(x)=g(x) ∴f(x)+f(-x)必偶函数. (8)设g(x)=f(x)-f(-x),则 g(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=[f(x)-f(-(x))]=-g(x) ∴f(x)-f(-x)必为奇函数.
解析
转载请注明原文地址:https://jikaoti.com/ti/o9GRFFFM
0
考研数学二
相关试题推荐
在考核中,若学员中靶两次,则认定合格而停止射击,但限定每人最多只能射击三次.设事件A=“考核合格”,B=“最多中靶一次”,C=“射击三次”,已知学员中靶率为p(0<P<1),则
[*]
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(O,一3,1,a)T,(I)求矩阵A;(Ⅱ)如果齐次线性方程组Ax=
设随机变量X的分布函数为又已知p(X=1)=1/4,则().
设f(x)是[0,+∞)上的连续函数,且当x≥0时成立,则f(x)=__________.
已知级数与反常积分均收敛,则常数P的取值范围是____________.
设un≠0(n=1,2,3…),且则级数().
曲线在点处的曲率半径R=_____.
求极限
在区间(一1,1)上任意投一质点,以X表示该质点的坐标.设该质点落在(一1,1)中任意小区间内的概率与这个小区间的长度成正比,则
随机试题
面部的横断层解剖特点。
辛亥革命时期,孙中山领导的资产阶级革命派的骨干力量是
“开始”功能区中显示的是最常用的______和______功能,如复制、粘贴、设置字体、段落、样式等。
某患者,男,23岁。发热、头晕、视物模糊1周。血常规示Hb72g/L,WBC17×109/L,分类中可见原始细胞。对明确诊断最有价值的检查是()
可用于重度痤疮(尤其是结节囊肿型痤疮)的药物是
我国《合同法》规定,当事人订立合同的形式包括()形式。
久期分析用来衡量利率变动对银行当期收益的影响。()
以反应迅速、有朝气、活泼好动、动作敏捷、情绪不稳定、粗枝大叶为特征的气质类型是()。
流言常常令人不悦,却很可能有助于丑事的暴露,阻止恶行的继续。对很多公众人物来说,单单是人们的议论就可以阻止不良行为。总有人________八卦和流言毁了自己心目中的明星,但事实上,少有哪个做得正、行得端的明星最终被流言蜚语摧毁;被破坏的仅仅是对偶像的___
Whentheyadviseyourkidsto"getaneducation"ifyouwanttoraiseyourincome,theytellyouonlyhalfthetruth.Whatthey
最新回复
(
0
)