首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为尺的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为尺的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
admin
2018-06-27
56
问题
求功:
(Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功?
(Ⅱ)半径为尺的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
选项
答案
(Ⅰ)(微元法).以球心为原点,x轴垂直向上,建立坐标系(如图3.5). [*]取下半球中的微元薄片,即[*]取小区间[x,x+dx][*][-1,0],相应的球体小薄片,其重量(即体积)为π(1-x
2
)dx,在水中浮力与重力相符,当球从水中移出时,此薄片移动距离为(1+x),故需做功dw
1
=(1+x)π(1-x
2
)dx.因此,对下半球做的功 w
1
=∫
-1
0
π(1+x)(1-x
2
)dx. [*]取上半球中的微元薄片,即V取小区间[x,x+dx][*][0,1],相应的小薄片,其重量为π(1-x
2
)dx,当球从水中移出时,此薄片移动距离为1.所受力为重力,故需做功dw
2
=π(1-x
2
)dx.因此,对上半球做的功 w
2
=∫
0
1
π(1-x
2
)dx. 于是,对整个球做的功为 w=w
1
+w
2
=∫
-1
0
π(1+x)(1-x
2
)dx+∫
0
1
π(1-x
2
)dx =∫
-1
1
π(1-x
2
)dx+∫
-1
0
πx(1-x
2
)dx [*] (Ⅱ)建立坐标系如图3.6.取x为积分变量,x∈[0,R]. [*][x,x+dx]相应的水薄层,看成圆柱体,其体积为 π(R
2
-x
2
)dx, 又比重ρ=1,于是把这层水抽出需做功dw=πx(R
2
-x
2
)dx.因此,所求的功 w=∫
0
R
πx(R
2
-x
2
)dx [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/o0dRFFFM
0
考研数学二
相关试题推荐
设f(x)具有二阶连续导数,f(0)-0,f’(0)=0,f’’(0)>0.在曲线y=f(x)上任意一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距记为u,求
(2012年试题,二)设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则__________.
设矩阵是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a,b和λ的值.
设二元函数计算二重积分,其中D={(x,y)|x|+|y|≤2}.
求极限
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
顶角为60°,底圆半径为a的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
求极限:
当0≤0≤π时,求对数螺线r=eθ的弧长.
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为_______.
随机试题
患者,女性,43岁。因急性化脓性胆囊炎行胆囊切除术,术后第3天无明显诱因下突发气促,逐渐加重,血压正常,呼吸45次/分,唇发绀,双下肺可闻及湿性啰音。吸氧8L/min下血气分析示PaO250mmHg,PaCO230mmHg。下列处理最有意义的是
A.3岁男孩,高热半天,惊厥多次,神志模糊1h,伴黏液脓血便B.4岁女孩,阵发腹痛1d,便血2次,伴皮肤紫癜,1周前曾患上呼吸道感染C.6个月男婴,呕吐门,伴阵发性腹痛,大便呈果酱样,腹部扪及腊肠样块物D.3岁男孩,突起腹痛
下列对中心地等级体系的三类型表述不正确的是()。
关于各变量的变动对权证价值影响方向的说法,错误的是()。
设10个产品中有7个合格品、3个不合格品,从中不放回地任取5个,取出的5个产品中恰有2个不合格品的概率为()。
为了让蓝天常在、绿水长流,我们要根据污染物“随波逐流”的特点,改变以往“各家自扫门前雪”的防治模式,从检测、预警、治理、补偿等方面建立区域联防联控机制,实现“无缝衔接”。从哲学上看,这体现了()
给定资料资料1“一张蓝图绘到底,一任接着一任干。”2018年4月13日,习近平总书记在庆祝海南建省办经济特区30周年大会上发表重要讲话,强调要有“功成不必在我”的精神境界和“功成必定有我”的历史担当。这一重要论述不仅是对海南干部提出的殷
2003年1月22日,公安部发布了加强公安机关内部管理的“五条禁令”其内容有()。
教师中心论的代表人物是()。
下列哪些措施能够恢复或解除死锁?()
最新回复
(
0
)