首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设二维随机变量(X,Y)的概率密度为 f(x,y)=Ae-2x2+2xy-y2,一∞<x<+∞,一∞<y<+∞, 求常数A及条件概率密度fY|X(y|x).
[2010年] 设二维随机变量(X,Y)的概率密度为 f(x,y)=Ae-2x2+2xy-y2,一∞<x<+∞,一∞<y<+∞, 求常数A及条件概率密度fY|X(y|x).
admin
2019-04-08
62
问题
[2010年] 设二维随机变量(X,Y)的概率密度为
f(x,y)=Ae
-2x
2
+2xy-y
2
,一∞<x<+∞,一∞<y<+∞,
求常数A及条件概率密度f
Y|X
(y|x).
选项
答案
利用泊松积分∫
-∞
+∞
e
-x
2
dx=[*]及概率密度的归一性:1=∫
-∞
+∞
∫
-∞
+∞
f(x,y)dxdy,或∫
-∞
+∞
f(x)dx=1求之, 而1=∫
-∞
+∞
∫
-∞
+∞
f(x,y)dxdy=A∫
-∞
+∞
∫
-∞
+∞
e
-2x
2
+2xy-y
2
dxdy=A∫
-∞
+∞
e
-x
2
dx∫
-∞
+∞
e
-(y-x)
2
d(y-x) [*] 再利用泊松积分,由上式得[*],故A=π
-1
. 或由∫
-∞
+∞
f
X
(x)dx=1也可求得A.事实上,利用泊松积分得到 f
X
(x)=∫
-∞
+∞
f(x,y)dy=A∫
-∞
+∞
e
-2x
2
+2xy-y
2
dy=A∫
-∞
+∞
e
-(y-x)
2
-x
2
dy =Ae
-x
2
∫
-∞
+∞
e
-(y-x)
2
d(y—x)=[*] (一∞<x<+∞), 则∫
-∞
+∞
f
X
(x)dx=1=[*],即[*]且 [*] 所以当一∞<x<+∞时, [*] (一∞<y<+∞).
解析
转载请注明原文地址:https://jikaoti.com/ti/nioRFFFM
0
考研数学一
相关试题推荐
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求:(Ⅰ)乙箱中次品件数X的数学期望;(Ⅱ)从乙箱中任取一件产品是次品的概率。
设某班车起点站上客人数X服从参数λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且途中下车与否相互独立,以Y表示在中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
已知矩阵A与B相似,其中A=.求a,b的值及矩阵P,使P-1AP=B.
求幂级数(|x|<1)的和函数S(x)及其极值.
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设f(x)在[a,b]有连续的导数,求证:.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=x2/2,P点的坐标为(1/2,1)
计算曲面积分(x3+z)dydz+(y3+x)dzdx+dxdy,其中∑是曲线(|x|≤1)绕z轴旋转一周所得到的曲面,取外侧.
随机试题
固体分散体可提高难溶性药物的溶出速率是因为
设计一个双向起泡排序算法,即在排序过程中交替改变扫描方向。
原发性闭角型青光眼未施行手术前不宜使用的滴眼剂是
A.破血祛瘀,杀虫B.活血止痛,化瘀止血,解蛇虫毒C.活血消癥,通经下乳,消肿排脓D.散瘀止痛,接骨疗伤E.活血通经,下乳消肿,利尿通淋王不留行的功效是
对刚性基础下复合地基的褥垫层越厚所产生的效果,正确的说法是()。
《大明律》与《唐律》相比较有哪些变化?
以下属于中共十一届三中全会主要内容的是
在考生文件夹下,打开文档Word2.docx,按照要求完成下列操作并以该文件名Word2.docx保存文档。将文中后4行文字转换为一个4行4列的表格;设置表格居中,表格各列列宽为2.5厘米、各行行高为0.7厘米;在表格最右边增加一列,列标题为“平均成绩
Itisbecauseofariseinairfares_______they’vesurchargedus10%onthepriceoftheholiday.
Heroinaddictiontodayisfoundchieflyamongyoungmenof【B1】______groupsinghettoareas.Ofthemorethan60,000knownaddic
最新回复
(
0
)