求下列旋转体的体积V: 由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.

admin2018-06-15  8

问题 求下列旋转体的体积V:
由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.

选项

答案如图3.3,所求体积为 [*] V=2π∫02πayxdx=2π∫0a(1-cost)a(t-sint)a(1-cost)dt =2πa30(1-cost)2(t-sint)dt =2πa30(1-cost)2tdt-2πa3-ππ(1-cost)2sintdt =2πa30(1-cost)2tdt [*]2πa3-ππ[1-cos(u+π)]2(u+π)du =2πa3-ππ(1+cos)2udu+2π2a3-ππ(1+cosu)2du =4π2a30(1+cosu)2du=4π2a30(1+2cosu+cos2u)du =4π2a3(π+[*]) =6π3a3

解析
转载请注明原文地址:https://jikaoti.com/ti/na2RFFFM
0

最新回复(0)