首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2016-06-25
37
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
及β
1
,…,β
s
均线性无关
C、α
1
,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为0的k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
2
)+…+λ
s
(α
s
一β
s
)=0,
从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://jikaoti.com/ti/nXzRFFFM
0
考研数学二
相关试题推荐
求
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0.证明:存在ξ∈(0,1),使得∫0ξf(x)dx=ξf(ξ).
设a0=1,a1=-2,a2=7/2,,an+1=-[1+1/(n+1)](n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设函数f(x)在[a,b]上满足罗尔定理的条件,且f(x)不恒等于常数,证明:在(a,b)内至少存在一点ξ,使f’(ξ)>0.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3).使f’(ξ)=0.
证明方程ex=-x2+ax+b不可能有三个不同的根.
求微分方程(x-2xy-y2)+y2=0的通解。
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设f(x)是区间[0,1]上的单调、可导函数,且满足其中f-1是f的反函数,求f(x).
随机试题
著作权的利用包括()
男性,30岁,从事驾驶员工作5年,近3年反复发作腰痛,放射到右足跟部,腰椎CT提示,腰骶椎间盘突向右后方,压迫神经根。以下体征中哪一条与该诊断不相符合
有挥发性的香豆素的结构特点是
关于诱导契合学说,正确的是
患者恶寒发热,无汗,头痛身痛,痰涕清稀,咽痒,舌苔薄白而润,脉浮紧。其证候是
下列属于机电工程常用的绝热材料是()。
城市快速路的特征有()。
工公司上个月订单突然增加,工厂生产量无法配合,总经理特别指派企划室罗云研究如何利用现有人力资源及充分利用现有设备准时出货。经过一番调查后,罗云发现公司现有薪资制度是采用计时制,不论员工生产效率,一律以工作时间乘每小时工资率计酬,实在无法激励工作增加产量。而
Whatdoesthemanwanttodo?
【B1】【B4】
最新回复
(
0
)