首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
admin
2018-06-27
54
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明
使得F’’(x
0
)=0.
选项
答案
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明[*],使得F’’(x
0
*
)=0即可. 显然F(0)=[*]=0,于是由罗尔定理知,[*],使得F’(x
1
)=0.又 F’(x)=2(sinx-1)f(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈[*],使得F’’(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是[*]x
0
=2π+x
0
*
,即x
0
∈[*],使得 F’’(x
0
)=F’’(x
0
*
)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/nUdRFFFM
0
考研数学二
相关试题推荐
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设f(x)在(一∞,+∞)是连续函数,求证是初值问题的解;
试证明:当x>0时θ(x)为单调增加函数且
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
设f(x)在[a,b]上有二.阶导数,且f’(x)>0.证明至少存在一点ξ∈(a,b),使
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率与曲率半径.
随机试题
下列各项中,可同有血虚证候的是
A.地高辛B.氨茶碱C.卡托普利D.肼屈嗪E.硝普钠扩张小动脉、小静脉,作用强、快、短的扩血管药物是
符合Ⅱ类民用建筑工程游离甲醛污染物浓度含量的有()mg/m3。
对于已确认减值损失的可供出售金融资产(指权益工具),在随后会计期间内公允价值上升且客观上与确认原减值损失事项相关的,应在原已确认的减值损失金额内,按恢复增加的金额贷记的会计科目为()。
与全面调查相比,抽样调查的特点有()。
一个懂得维修摩托车的技工,容易学会维修汽车。这体现的迁移类型是()。
根据下列资料,回答问题。2012—2016年,S省城镇化水平快速提高。2016年年末,S省常住人口3681.61万人,其中居住在城镇区域的常住人口2069.63万人,较2015年年末增加53.26万人;城镇化率达56.21%,居全国第16位,比2
设有关系R和S,关系代数表达式R-(R-S)表示的是
Solveeachofthefollowingequationsforx.(a)5x-7=28(b)12-5x=x+30(c)5(x+2)=1-3x(d)(x+6)(2x-1)=0(e)x2+5x-
A、Heisn’treadytoshowhispicturesyet.B、Heisn’treadytotakepicturesyet.C、Thepicturesarestillbeingprocessed.D、He
最新回复
(
0
)