首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
admin
2020-03-01
41
问题
已知n维向量组α
1
,α
2
,…,α
s
线性无关,则n维向量组β
1
,β
2
,…,β
s
也线性无关的充分必要条件为
选项
A、α
1
,α
2
,…,α
s
可用β
1
,β
2
,…,β
s
线性表示.
B、β
1
,β
2
,…,β
s
可用α
1
,α
2
,…,α
s
线性表示.
C、α
1
,α
2
,…,α
s
与β
1
,β
2
,…,β
s
等价.
D、矩阵(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)等价.
答案
D
解析
从条件A可推出β
1
,β
2
,…,β
s
的秩不小于α
1
,α
2
,…,α
s
的秩s,β
1
,β
2
,…,β
s
线性无关.即A是充分条件,但它不是必要条件.
条件C也是充分条件,不是必要条件.
条件B既非充分的,又非必要的.
两个矩阵等价就是它们类型相同,并且秩相等.现在(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)都是n×s矩阵,(α
1
,α
2
,…,α
s
)的秩为s,于是β
1
,β
2
,…,β
s
线性无关(即矩阵(β
1
,β
2
,…,β
s
)的秩也为s)<=>(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)等价.
转载请注明原文地址:https://jikaoti.com/ti/mftRFFFM
0
考研数学二
相关试题推荐
∫χ2arctanχdχ.
求其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图l-4-2)。
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
计算In=∫一11(x2一1)ndx.
某工厂的同一种产品分销两个独立市场,两个市场的需求情况不同,设价格函数分别为P1=60-3Q1,P2=20-2Q2,厂商的总成本函数为C=12Q+4,Q=Q1+Q2工厂以最大利润为目标,求投放每个市场的产量,并确定此时每个市场的价格.
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求矩阵A的全部特征值;
设xOy平面上n个不同的点为Mi(xi,yi),i=1,2,…,n(n≥3),记则M1,M2,…,Mn共线的充要条件是r(A)=()
函数f(x)=(x2一x一2)|x3一x|不可导点的个数是()
数列1,,…的最大项为________.
已知f(x)具有任意阶导数,且fˊ(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)=[].
随机试题
驾驶人因服兵役、出国(境)等原因无法办理审验时,延期审验期限最长不超过多长时间?
整数15具有被它的十位数字和个位数字同时整除的性质,则在12和50之间(包括12和50)具有这种性质的整数的个数是:
关于民事权利,下列哪些选项是正确的?
投资者购买股票最主要的目的是获得资产保值,避免遭受通货膨胀的风险。()
保持人力资源实务的一致性有助于()。
求助者:您的分析有道理。可是即便是绝对化要求或者有点以偏概全,但它们并非不合理呀!心理咨询师:这就是我下一步要解决的问题,也是我们工作的核心部分。我们首先要做的是……合理情绪疗法中,与不合理信念辩论的方法包括()
地球所在的太阳系的八大行星中,存在生命的就占了八分之一。按照这个比例,考虑到宇宙中存在数量巨大的行星,因此,宇宙中有生命的天体的数量一定是极其巨大的。以上论证的漏洞在于,不加证明就预先假设:
在一个ER图中,包含三个实体集,分别是员工、部门和项目;员工内部存在一对多的领导联系,员工和部门之间存在一对一的管理联系,员工和部门之间存在多对一的属于联系,员工和项目之间存在多对多的参与联系,部门和项目之间存在一对多的负责联系,则将该ER图转化为关系模型
品が好さ________なら、買いなさい。
—Brucewaskilledinatrafficaccident.—______Italkedwithhimyesterdaymorning.
最新回复
(
0
)