首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设数列{xn}满足:x1>0,xn-1(n=1,2,…).证明{xn}收敛,并求xn.
设数列{xn}满足:x1>0,xn-1(n=1,2,…).证明{xn}收敛,并求xn.
admin
2022-09-22
38
问题
设数列{x
n
}满足:x
1
>0,x
n
-1(n=1,2,…).证明{x
n
}收敛,并求
x
n
.
选项
答案
设f(x)=e
x
-1-x(x>0),则有 f’(x)=e
x
-1>0.因此f(x)>f(0)=0,[*]>1. 从而[*]>1,可知x
2
>0. 猜想x
n
>0,依据数学归纳法证明. 当n=1时,x
1
>0,成立; 假设当n=k(k=2,3,…)时,有x
k
>0,则n=k+1时,有 [*]>1,因此x
k+1
>0. 从而得知无论n取任何自然数,都有x
n
>0,即数列{x
n
}有下界. 又x
n+1
-x
n
=[*],设g(x)=e
x
-1-xe
x
. 当x>0时,g’(x)=e
x
-e
x
-xe
x
=-xe
x
<0. 因此g(x)单调递减,g(x)<g(0)=0,即有e
x
-1<xe
x
, 因此x
n+1
-x
n
=[*]<ln 1=0,可知数列{x
n
}单调递减. 由单调有界准则可知数列{x
n
}收敛. 设[*]x
n
=A,则有Ae
A
=e
A
-1(A≥0).可知A=0是该方程的解. 因为当x>0时,g(x)=e
x
-1-xe
x
<g(0)=0. 因此A=0是方程Ae
A
=e
A
-1的唯一解,故[*]x
n
=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/mahRFFFM
0
考研数学二
相关试题推荐
设f(χ)=,则χ2项的系数为_______.
已知则y’=______。
设f〞(χ)连续,f′(χ)≠0,则=_______.
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0,F(x)=du.求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
设平面区域D={(x,y)|(x-1)2+(y-1)2≤2},I1=(x+y)dσ,I2=ln(1+x+y)dσ.则正确的是()
已知连续函数f(x)满足条件,求f(x).
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
二次型f(χ1,χ2,χ3)=χ12+aχ22+χ32-4χ1χ2-8χ1χ3-4χ2χ3经过正交变换化为标准形5y12+by22-4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢,在健身运动中,他所消耗的为16卡/千克/天乘以他的体重。假设以脂肪形式存储的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎么随时间变化。
已知y‘(x)=arctan(x-1)2及y(0)=0,求
随机试题
符合羊水栓塞的描述是
关于结节性甲状腺肿,下列叙述哪一项是正确的
根据艾瑞克森的心理社会发展学说,幼儿期发展的危机与转机的关键是
治疗系统性红斑狼疮热郁积饮证,应首选
从契约角度出发,新制度经济学认为交易成本下列选项不包括()。
在生产某零件的过程中,已知设计尺寸为5mm,生产过程中所允许的误差为±0.009。某道工序是保证该齿轮上述设计尺寸的最后加工工序,现在需要对该工序的工序能力进行评估,通过对该齿轮产品的随机抽样,经测算,样本平均值和公差在中心重合,样本标准差为s=0.004
早在1990年第一辆电动汽车就已经上路。尽管近些年一些知名汽车厂商先后推出了各自的纯电动概念车,但这并未拉近电动汽车与现实生活之间的距离。究其原因,电动汽车的研发并非只是将传统发动机更换为电动机这般简单,而是一个庞大的研究课题,仅车用蓄电池就存在电池容量、
随着生存的需求不断上升和环保意识的缺乏,人类不合理地利用和开发土地、砍伐森林、破坏植被。引起了水土流失,而水土流失又进一步地造成了植被的破坏。这一现象说明()
Advancingagemeanslosingyourhair,yourwaistlineandyourmemory,right?DanaDenisisjust40yearsold,but【C1】______she’s
Walkingthroughthewoodsalonecanbeafrighteningprospectforakid,butnotfor7-year-oldMatthewofPortland,Oregon.He
最新回复
(
0
)