首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组 (I):α1,α2,α3; (II):α1,α2,α3,α4; (Ⅲ):α1,α2,α3,α5. 如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4. 证明向量组α1,α2,α3,α5-α4的秩为4.
已知向量组 (I):α1,α2,α3; (II):α1,α2,α3,α4; (Ⅲ):α1,α2,α3,α5. 如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4. 证明向量组α1,α2,α3,α5-α4的秩为4.
admin
2013-04-04
37
问题
已知向量组
(I):α
1
,α
2
,α
3
;
(II):α
1
,α
2
,α
3
,α
4
;
(Ⅲ):α
1
,α
2
,α
3
,α
5
.
如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.
证明向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
r(I)=r(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,因此α
4
可 由α
1
,α
2
,α
3
线性表出,设为α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
. 若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0,即 (k
1
-l
1
k
4
)α
1
+(k
2
-l
2
k
4
)α
2
+(k
3
-l
3
k
4
)α
3
+k
4
α
5
=0, 由于r(Ⅲ)=4, 即α
1
,α
2
,α
3
,α
5
线性无关,故必有 [*] 解出k
4
=0,k
3
=0,k
2
=0,k
1
=0. 于是α
1
,α
2
,α
3
,α
5
-α
4
线性无关,即其秩为4.
解析
转载请注明原文地址:https://jikaoti.com/ti/mKcRFFFM
0
考研数学一
相关试题推荐
设m,n均是正整数,则反常积分的收敛性
已知y=f(x)对一切的x满足xf"(x)+3x[f’(x)]2=1一e一x,若f’(x0)=0(x0≠0),则
A、 B、 C、 D、 B
把x→0+时的无穷小量α=∫0xcost2dt,β=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是
A、 B、 C、 D、 A
若函数f(x)=在x=0处连续,则()
(2009年)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为【】
A、处处可导B、恰有一个不可导点C、恰有两个不可导点D、至少有三个不可导点C一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式的不变性.利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数.幂指数函数f(x)g(x)求导法,隐
(2011年试题,三)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T,不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.求α的值;
随机试题
产权比率的计算公式是()
关于阴道前壁膨出,下列说法不恰当的是
门-腔分流术两天内应注意观察的并发症是
对动物做肝脏B超探查时,出现局限性液性暗区,其中有散在的光点或小光团,提示
利用痰液检查脱落细胞可发现痰液检出抗酸杆菌
男婴,10个月,体重10kg,头围45cm,方颅,前囟1.5cm,平坦,今晨突然抽搐一次,持续1~2分钟缓解。当时测体温38.5℃,抽搐后即入睡。醒后活动如常,查血钙1.75mmol/L(7mg/dl),血磷45mmol/L(4.5mg/dl),最可能的惊
按照法律规定,()可以成为建筑施工合同的担保人。
下列有关采购与付款循环的主要业务活动及其涉及的相关认定的说法,正确的有()。
Youarewhatyoueat,orsothesayinggoes.ButRichardWrangham,ofHarvardUniversity,believesthatthisistrueinamorep
A、 B、 C、 D、 A
最新回复
(
0
)