首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,十三)已知向量组β1=与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
(2000年试题,十三)已知向量组β1=与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
admin
2021-01-19
40
问题
(2000年试题,十三)已知向量组β
1
=
与向量组
具有相同的秩,且β
3
可由α
1
,α
2
,α
3
线性表示,求a,b的值.
选项
答案
由题设,[*]设矩阵4=(α
1
,α
2
,α
3
),则[*]利用初等行变换化A为行简化阶梯形得[*]即r(A)=2,因此α
1
,α
2
,α
3
的秩为2且α
1
,α
2
线性无关,α
3
=3α
1
+2α
2
,β
1
β
2
,β
3
与α
1
,α
2
,α
3
具有相同的秩,因此β
1
β
2
,β
3
线性相关,则|β
1
β
2
,β
3
|=0,即[*]可推出a=3b,又由已知条件β
3
可由α
1
,α
2
,α
3
线性表示,从而β
3
可由α
1
,α
2
线性表示,因此,向量组|α
1
,α
2
,β
3
|线性相关,同理有|α
1
,α
2
,β
3
|=0,即[*]可解得b=5,因而a=15
解析
本题还可由以下方法求解,由已知β
3
可由α
1
,α
2
,α
3
线性表示,等价于方程组
有解,通过对其增广矩阵施行行初等变换化为行简化阶梯形得
由方程组有解的条件知
,即b=5,从而由原解法同样可算出a的值.
转载请注明原文地址:https://jikaoti.com/ti/R9ARFFFM
0
考研数学二
相关试题推荐
矩阵的非零特征值是_______.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
已知齐次线性方程组问a,b为何值时,方程组(I)与(Ⅱ)有非零公共解?并求出全部非零公共解.
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
求下列积分。设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x(f(y)dy。
求下列积分。设f(x)=∫1xe-y2dy,求∫01x2f(x)dx;
(2012年试题,三)已知函数若x→0时f(x)一a与xk是同阶无穷小,求常数k的值.
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
随机试题
引起急性肾功能衰竭的病因是【】
原告莱蒙的妻子莱蒙夫人,原为比利时人,因与莱蒙结婚而取得法国国籍。后来,她想与莱蒙离婚而与一罗马尼亚人结婚,由于法国法律规定不准离婚,而德国法律准允离婚,于是莱蒙夫人只身迁居德国,并申请加入德国国籍,而后在德国法院提起诉讼要求离婚,获得离婚判决后,在柏林与
()作为中央收入,其他资源税作为地方收入。
可以影响信贷结构的货币政策工具应该是()。
国际货币基金组织贷款的特点有()。
甲、乙两公司合作开发完成一项发明,如果双方事先没有约定,下列说法不正确的有()。
澳门的标志是()。
无边落木萧萧下,__________。(杜甫《登高》)
教育政策的特征不包括()。
报告要求内容集中单一,其意思是指一篇文章只能涉及一个问题、一件事情、一个事实、一个道理。()
最新回复
(
0
)