首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2. 求f(x,y)在椭圆域D={(x,y)∣x2+y2/4≤1}上的最大值和最小值.
[2005年] 已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2. 求f(x,y)在椭圆域D={(x,y)∣x2+y2/4≤1}上的最大值和最小值.
admin
2019-04-05
50
问题
[2005年] 已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.
求f(x,y)在椭圆域D={(x,y)∣x
2
+y
2
/4≤1}上的最大值和最小值.
选项
答案
利用全微分和初始条件先求出f(x,y)的表达式,而f(x,y)在椭圆域上的最大值、最小值可能在区域内或其边界上达到,而后者又可转化为求条件极值. (1)求f(x,y)的表达式.由dz=2x dx一2y dy可知z=f(x,y)=x
2
一y
2
+C. 再由f(1,1)=2,得C=2,故z=f(x,y)=x
2
一y
2
+2. (2)求f(x,y)在D内的驻点及相应函数值.令[*]=2x=0.[*]=-2y=0,求得D内的唯一驻点(0,0),且f(0,0)=2. (3)求f(x,y)在D的边界y
2
=4(1一x
2
)上的最大值、最小值.将y
2
=4(1一x
2
)代入 z=x
2
一y
2
+2,得到 z=x
2
一(4—4x
2
)+2, 即 z=5x
2
一2 (一1≤x≤1). 显然,z(x)在[一1,1]上的最大值为z∣
x=±1
=3,最小值为z∣
x=0
=一2. 综上所述,f(x,y)的最大值为max{2,3,一2}=3,最小值为min{2,3,一2)=一2. 解二 同解法一,求得驻点(0,0).用拉格朗日乘数法求此函数在椭圆x
2
+y
2
/4=1上的极值. 设 L=x
2
一y
2
+2+λ(x
2
+y
2
/4—1), 则[*] 由式①、式②、式③解得[*] 即有4个可能的极值点(1,0),(一1,0),(0,2),(0,一2). 又f(1,0)=f(一1,0)=3,f(0,2)=f(0,一2)=一2,再与f(0,0)=2比较,得f(x,y)在D上的最大值为3,最小值为一2.
解析
转载请注明原文地址:https://jikaoti.com/ti/mBLRFFFM
0
考研数学二
相关试题推荐
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
设函数f(u)有连续的一阶导数,f(2)=1,且函数z=满足,x>0,y>0,①求z的表达式.
求f(x)=3x带拉格朗日余项的n阶泰勒公式.
已知ξ=[1,1,一1]T是矩阵A=的一个特征向量.(1)确定参数a,b及ξ对应的特征值λ;(2)A是否相似于对角阵,说明理由.
求极限:
利用夹逼准则证明:
欲做一个容积为300m3的无盖圆柱形蓄水池,已知池底单位造价为周围单位造价的两倍,问蓄水池的尺寸应怎样设计才能使总造价最低?
已知齐次线性方程组同解,求a,b,c的值。
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程租AX=0的通解是____________。
当x→0+时,与等价的无穷小量是()
随机试题
丙米嗪的药理作用,不正确的是
音乐作品:《蓝色多瑙河圆舞曲》
关于乳腺脂肪瘤声像图特点,不包括
A.清营汤合黄连解毒汤B.托里消毒散C.附子理中汤D.益胃汤E.犀角地黄汤
四气的形成
下面对核实的叙述不正确的是
选定减水剂品种前,必须与所用的水泥进行适应性检验,低温施工宜使用()。
根据以下资料,回答106-110题自二十世纪末期,山西同全国一样粮食供需形势发生逆转,粮价持续走低,粮食生产效益滑坡,农民生产积极性受挫。2004年初,中央下发一号文件,实施了“一减三补”等一系列惠农政策,之后连续三年出台中央一号文件,“保护和加强
根据中国和美国政府机构专家组成的工作组测算,美国官方统计的对华贸易逆差被高估了20%左右。更令人难以信服的是,美国政府引用的贸易数据只包括货物贸易,并未反映服务贸易。如果算进去,所谓的“贸易不平衡论”就更立不住了。 上述结论建立在下列哪项假设的基础之上
设有课程关系模式如下:R(C#,Cn,T,Ta)(其中,C#为课程号,Cn为课程名,T为教师名,Ta为教师地址)并且假定不同课程号可以有相同的课程名,每个课程号下只有一位任课教师,但每位教师可以有多门课程。该关系模式可进一步规范化为()。
最新回复
(
0
)