首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
admin
2019-04-09
33
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩r(A)=4—1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。
又A
*
(α
1
,α
2
,α
3
,α
4
)=A
*
A=|A|E=0,所以向量α
1
,α
2
,α
3
,α
4
都是方程A
*
x=0的解。将(1,0,2,0)
T
代入方程组Ax=0可得α
1
+2α
3
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关,故选C。
事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,A选项不正确;显然,B选项中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,B选项不正确;而D选项中的向量组含有四个向量,不是基础解系,所以D选项也不正确。
转载请注明原文地址:https://jikaoti.com/ti/lYBRFFFM
0
考研数学三
相关试题推荐
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
(1)由方程sinxy+ln(y-x)=x确定函数y=y(x),求.(2)设函数y=y(x)由2xy=x+y确定,求dy|x=0.(3)设y=y(x)由ln(x2+y)=x3y+sinx确定,求.(4)设由e-y+x(y-x)=1+x确定y=y(x)
设un=(-1)nln(1+),则().
设方程组无解,则a=______.
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
下列命题正确的是().
对二元函数z=f(x,y),下列结论正确的是().
把二重积分写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设y=y(x)在[0,+∞)内可导,且在x>0处的增量△y=y(x+△x)一y(x)满足△y(1+△y)=+α,其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
随机试题
糖皮质激素对血液和循环系统的作用,哪项不正确
下面关于当事人自认的说法错误的是
瘿病早期眼突治以化痰散结,清肝明目,药用
按照一般规律()其公共服务设施的门类越齐全,专业化水平越高,规模也就越大。
设备监理的主要任务是( ),这种任务与其他工程咨询工作有很大的区别。
下列关于加工贸易保证金台账制度的表述中,错误的是:
从企业内部信息来源来看,可能发生减值的迹象有()。
FATCA要求外国机构向美国税务机关报告美国账户持有人信息,若外国机构不遵守FATCA,美国将对外国机构来源于美国的所得和收入扣缴()的惩罚性预提所得税。
ElectromagneticEnergy1Whitelightseemstobeacombinationofallcolors.Theenergythatcomesfromasourceoflighti
Manypeoplewronglybelievethatwhenpeoplereacholdage,theirfamiliesplacetheminnursinghomes.Theyareleftinthe【C1】
最新回复
(
0
)