首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率分别为 其中θ(0<θ<1/2)是未知参数,利用总体X的如下样本值 3,1,3,0,3,1,2,3 求θ的矩估计值和最大似然估计值.
设总体X的概率分别为 其中θ(0<θ<1/2)是未知参数,利用总体X的如下样本值 3,1,3,0,3,1,2,3 求θ的矩估计值和最大似然估计值.
admin
2019-01-23
19
问题
设总体X的概率分别为
其中θ(0<θ<1/2)是未知参数,利用总体X的如下样本值
3,1,3,0,3,1,2,3
求θ的矩估计值和最大似然估计值.
选项
答案
先求矩估计 ∵E(X)=0×θ
2
+1×20(1-θ)+2×θ
2
+3×(1-2θ)=3-4θ ∴[*] 由题目所给的样本值算得 [*](3+1+3+0+3+1+2+3)=2 代入得[*] 又求最大似然估计,本题中n=8,样本值x
1
,…,x
8
由题目所给,故似然函数为 L(θ)=[*]P{X
i
=x
i
}=P{X=0}[P(X=1)]
2
P(X=2)[P(X=3)]
4
=θ
2
.[20(1-θ)]
2
.θ
2
.(1-2θ)
4
=4θ
6
(1-θ)
2
(1-2θ)
4
∴lnL(θ)=ln4+6lnθ+2ln(1-θ)+4ln(1-2θ) [*] 令[*]lnL(θ)=0,得24θ
2
-28θ+6=0, 解得θ=[*]不合题意,舍去,故得θ的最大似然估计值为[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/lV1RFFFM
0
考研数学一
相关试题推荐
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
设y=y(x)在[0,+∞)内可导,且在x>0处的增量△y=y(x+△x)一y(x)满足△y(1+△y)=,其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
求.
设二维随机变量(X,Y)在区域D={(X,Y)|0≤y≤1,Y≤x≤Y+l}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
假设随机变量X服从指数分布,则随机变量Y=min{X,2}的分布函数
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
设当x>0时,方程kx+=1有且仅有一个解,求k的取值范围.
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b,试证:在[a,b]内存在ξ,使得
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
随机试题
中国古代第一批确有历史记载而在当时又以绘画著称的画家出现在()。[湖南2020]
皮下气肿产生原因不包括()
下列哪一项不属于免疫抑制药
患者男性,28岁,糖尿病病程已有11余年,使用中性胰岛素治疗。但血糖未规律监测。近3月出现眼睑及下肢水肿,尿糖(++),WBC0~4/HP,尿蛋白(+++)。考虑的诊断是()
单元工程或工序质量经鉴定达不到设计要求,经加固补强后,改变外形尺寸或造成永久性缺陷的,经建设(监理)单位确认能基本满足设计要求,其质量可按()处理。
原材料或成品在运输过程中,极易破损或变质,则不宜进行外包。()
事实婚姻关系的存续期间双方之间的人身、财产等关系适用()。
小水两年后需要2万元来支付研究生的学费,若投资收益率是8%,那么今年小水需要拿出()万元来进行投资。
“最近发展区”是指儿童的智力在教师指导下的潜在发展水平。
Thecostisgoingupforjustabouteverything,andcollegetuitionisnoexception.Accordingtoanationwide【B1】______publishe
最新回复
(
0
)