首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组AX=B的系数矩阵的秩为r,η1,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-+1 (其中k1+…+kn-r+1=1).
设非齐次线性方程组AX=B的系数矩阵的秩为r,η1,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-+1 (其中k1+…+kn-r+1=1).
admin
2016-05-31
54
问题
设非齐次线性方程组AX=B的系数矩阵的秩为r,η
1
,η
n-r+1
是它的n-r+1个线性无关的解.试证它的任一解可表示为
x=k
1
η
1
+…+k
n-r+1
η
n-+1
(其中k
1
+…+k
n-r+1
=1).
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=b的解.取ξ
1
=η
2
-η
1
,ξ
2
=η
3
-η
1
,…,ξ
n-r
=η
n-r+1
-η
1
,根据线性方程解的结构,则它们均为对应齐次 方程Ax=0的解. 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0,即l
1
(η
2
-η
1
)+l
2
(η
3
-η
1
)+…+l
n-r
(η
n-r+1
-η
1
)=0,亦即-(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0. 由η
1
,η
2
,…,η
n-r+1
线性无关知-(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0,与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立.因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的一组基. 由于x,η
1
均为Ax=b的解,所以x-η
1
为Ax=0的解,因此x-η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设x-η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
=k
2
(η
2
-η
1
)+k
3
(η
3
-η
1
)+…+k
n-r+1
(η
n-r+1
-η
1
), 则 x=η
1
(1-k
2
-k
3
-…-k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
=0, 令k
1
=1-k
2
-k
3
…-k
n-r+1
则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/lJxRFFFM
0
考研数学三
相关试题推荐
我国对资本主义工商业进行社会主义改造也意味着国家对资本家采取着和平赎买的政策。对于资产阶级改造的方法是()。
1924年1月,中国国民党第一次全国代表大会在孙中山主持下在广州举行。孙中山在大会上说:“现在是拿出鲜明反帝国主义的革命纲领,来唤起民众为中国的自由独立而奋斗的时代了!”成为国共合作的政治基础和革命统一战线的共同纲领是()。
鹦哥岭是海南省陆地面积最大的自然保护区,区内分布着完整的垂直带谱。在我国热带雨林生态系统保存上独占鳌头。这里山高路远,条件艰苦,一直难以招聘到具有较高专业素质的工作人员。 一、鹦哥岭来了大学生 自2007年起,先后有27名大学毕业生(2名博士、4名
在社会主义市场经济条件下,市场主体必须通过向社会和他人提供一定数量和质量的产品,建立满足社会和他人需求的良好信誉,即通过为社会和他人服务并为其所接受以实现自己的利益。这说明()。
2019年5月15日,来自亚洲47个国家和五大洲的各方嘉宾,出席亚洲文明对话大会,共商亚洲文明发展之道,共话亚洲合作共赢大计,致力深化文明交流互鉴,致力务实共建亚洲命运共同体、人类命运共同体的人文基础。这是亚洲文明交流互鉴的重要历史节点,是人类文明发展的重
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
随机试题
川端康成的小说《雪国》的女主人公是
Thenews_____toShanghaidelightedallofthem.
某高血压患者,与他人争吵后血压剧升至33/16kPa(250/120mmHg),发生癫癎样抽搐、呕吐、意识模糊等中枢神经系统功能障碍表现,最可能的诊断为
A、吲哚类B、异喹啉类C、莨菪烷类D、喹喏里西啶类E、有机胺类麻黄中的生物碱主要是
进度偏差的表达形式包括( )。
金融会计是我国会计体系的主体。()
在我国,批准设立期货公司的机构是()。
诺言:履行
按照C语言规定的用户标识符命名规则,不能出现在标识符中的是()。
Suicidehasbeenacauseof【B1】______inmastsocietiesforalongtime.The【B2】______Greeks,forexample,requiredpeoplewhowa
最新回复
(
0
)