首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为( )。
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为( )。
admin
2021-01-28
62
问题
设A=(α
1
,α
2
,α
3
,α
4
)为四阶方阵,且α
1
,α
2
,α
3
,α
4
为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)
T
,则方程组A
*
X=0的基础解系为( )。
选项
A、α
1
,α
2
,α
3
B、α
1
,α
2
,α
3
+α
3
C、α
1
,α
3
,α
4
D、α
1
+α
2
α
2
+2α
4
α
4
答案
D
解析
由rA=3得,r(A
*
)=1,则A
*
X=0的基础解系由3个线性无关的解向量构成。
由α
1
=4α
3
=0得α
1
,α
3
成比例,显然A、B、C不对,选D。
转载请注明原文地址:https://jikaoti.com/ti/kuaRFFFM
0
考研数学三
相关试题推荐
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2-q1-4q2-2q1q2-36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元.(Ⅰ)如不限制排
向量组α1,α2,…,αs线性无关的充分条件是().
设微分方程=2y—x,在它的所有解中求一个解y=y(x),使该曲线y=y(x)与直线x=1,x=2及x轴围成的图形绕z轴旋转一周所生成的旋转体体积最小.
设f(x,y)=则f(x,y)在点(0,0)处()
设函数f(x)满足关系式f"(x)+[f’(x)]2=x,且f’(0)=0,则
下述命题:①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函
[2014年]求极限
设f(x)满足。(Ⅰ)讨论f(x)在(-∞,+∞)是否存在最大值或最小值,若存在则求出;(Ⅱ)求y=f(x)的渐近线方程。
在电炉上安装了4个温控器,其显示温度的误差是随机的。在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电。以E表示事件“电炉断电”,而T1≤T2≤T3≤T4为四个温控器显示的按递增顺序排列的温度值,则事件E=()
若当x→∞时,则a,b,c的值一定为
随机试题
在Excel2003中,下面叙述正确的有______。
可以延期举行听证的情形是
医师义务和权利不包括()
两台打夯机在同一作业面夯实时,前后距离不得小于()m。
《公路工程国内招标文件范本》(2003年版)的“工期”是指本合同工程或某单项工程从开工至交工的时间,均从投标书附录中规定的开工期的最后一天算起至交工证书上写明的交工日期止。()
我国中原地区某小山丘周围要布置一组住宅群,现有平面示意的A、B、C、D四个场地可供选择,在满足日照通风要求的前提下,哪个场地对提高建筑密度、节约用地和适用性方面最为有利?
当主管税务机关确认购货方在真实交易中取得的供货方虚开的增值税专用发票属于善意取得时,符合规定的处理方法是()。(2004年)
案例一般资料:求助者,女性,45岁,儿科主任医师。案例介绍:求助者的父亲半年前因癌症动了手术,两个多月前发现多处转移,医院建议立即化疗。求助者一方面担心父亲手术后身体虚弱,不能承受化疗所带来的痛苦,另一方面又怕不做化疗延误病情,为此陷入
f(x)=+6x+1的图形在点(0,1)处切线与x轴交点坐标是
Apaper,Anatomy(剖析)ofaLarge,ScaleSocialSearchEngine,layingoutastrategyforsocialsearchhasbeengettingagooddeal
最新回复
(
0
)