首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: 存在η∈(1,2),使得∫12f(t)dt=ξ(ξ一1)f’(η)ln2.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: 存在η∈(1,2),使得∫12f(t)dt=ξ(ξ一1)f’(η)ln2.
admin
2018-05-23
28
问题
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又
存在,证明:
存在η∈(1,2),使得∫
1
2
f(t)dt=ξ(ξ一1)f
’
(η)ln2.
选项
答案
由[*]得f(1)=0, 由拉格朗日中值定理得f(ξ)=f(ξ)一f(1)=f
’
(η)(ξ一1),其中1<η<ξ, 故∫
1
2
f(t)dt=ξ(ξ一1)f
’
(η)ln2.
解析
转载请注明原文地址:https://jikaoti.com/ti/kb2RFFFM
0
考研数学一
相关试题推荐
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=.(1)记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,An也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设λ1、λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈R2,X≠0证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设随机变量X与y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0.记Z=X-Y.证明为σ2的无偏估计量.
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
设,l元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n—r+1个解可以线性表示方程组Ax=b的任一解.
设a≠b,证明:
设有行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,证明D能被13整除.
随机试题
关于赞助活动说法正确的是()。
下列各式中正确的是()
A.破裂孔B.卵圆孔C.眶上裂D.圆孔E.颈动脉孔上颌神经出颅经
制订规范、标准的对外承诺(),是实行对外承诺标准化的关键。
房地产交易中的替代原理,导致了在同一市场中效用相同的房地产之间,其价格应当()。
关于税务机关代开增值税专用发票的规定,下列陈述正确的是()。
某物业管理项目经理工作一段时间后发现所管物业项目存在以下问题:①基层员工工作不安心,流动性大,影响服务计划的实施。②不少业主对物业服务不理解,认为收费多,服务少,且经常投诉称员工不够热心,技能差。③小区中业主关心集体事务不够,邻里之间缺乏往来,共同议
法治和礼治发生在两种不同的社会______中。这里所谓的礼治也许就是通常所谓的人治,但是礼治一词不会像人治一词那样容易引起______,以致有人觉得社会秩序是可以由个人好恶来维持的了。依次填入划横线部分最恰当的一项是:
简述上下级人民检察院的关系及其表现。(2013年一综一第65题)
Readthetextbelowfromareportaboutsalesfigures.Inmostlines(41-52),thereisoneextraword.Iteitherisgrammatically
最新回复
(
0
)