首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三)设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
(2004年试题,三)设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2013-12-27
25
问题
(2004年试题,三)设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
矩阵A的特征多项式为[*]若λ=2是特征方程的二重根,则2
2
一8×2+18+3a=0,得a=一2.当a=一2时,A的特征值为2,2,6,矩阵[*]的秩为1,则λ=2对应的线性无关的特征向量有两个,故此时A可相似对角化;若A=2不是特征方程的二重根,则λ
2
一8λ+18+3a是完全平方式,从而得△=64—4(18+3a)=0,即得[*].当[*]时,A的特征值为2,4,4,矩阵[*]的秩为2,故λ=4对应的线性无关的特征向量只有一个,故此时A不可相似对角化.
解析
n阶矩阵A可相似对角化
对于A的任意k
i
重特征值λ
i
,恒有n—r(λ
i
E一A)=k
i
,而单根一定有且只有一个线性无关的特征向量.
转载请注明原文地址:https://jikaoti.com/ti/kGcRFFFM
0
考研数学一
相关试题推荐
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
已知R3的两个基为设向量x在前一基中的坐标为(1,1,3)T,求它在后一基中的坐标.
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
设函数y=y(x)由参数方程所确定,求:
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.根据(1)中的矩阵B,证明A与B相似;
曲线y=(x2+1)/(2x2-x+3)arctanx的水平渐近线为________.
设x的概率密度为f(x)=,F(x)是x的分布函数,求Y=F(x)的分布函数和概率密度。
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
随机试题
女性,38岁,偶然发现右乳有一肿块,黄豆大,质硬,手术切除,病理诊断为导管内癌,其组织学改变是
关于点彩红细胞的叙述,正确的是
下列哪项不是腹水的表现
影响混凝土强度的主要因素包括()。
某一世行贷款的工程项目,施工阶段执行FIDIC合同条款。工程计量与支付采用承包人投标书中单价或合价构成的有效合同价(不含预备费)一次性包干完成的形式结算。本项目合同价为2000万元,预备费160万元,动员预付款为10%,原付款证书的最少金额为合同价的3%,
场外市场的特征具有()。Ⅰ.挂牌标准较低,通常不对企业规模和盈利能力等情况进行要求Ⅱ.信息披露要求较低、监管较为宽松Ⅲ.交易制度通常采用竞价交易制度Ⅳ.交易制度通常采用做市商制度
编辑应用文不包括()。
苦瓜:西红柿:葡萄
下列选项中,应当认定为合同法中要约的是()。
Therearetwogeneralwaysinwhichtheterm"market"isusedineconomics.First,amarketisthoughtofasaformalorinforma
最新回复
(
0
)