首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
admin
2021-02-25
30
问题
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
选项
答案
[*].令 g(x)=xf’(x)-f(x),g(0)=-f(0)=0, g’(x)=f’(x)+xf”(x)-f’(x)=xf”(x),g’(0)=0, 当x<0时g’(x)<0;当x>0时g’(x)>0.故g(0)=0是g(x)的最小值,所以当x≠0时,g(x)>g(0)=0,从而φ’(x)>0,即φ(x)在(-∞,0)和(0,+∞)都是单调增加的.
解析
本题考查函数单调性的判定方法,只需判断φ’(x)>0即可.
转载请注明原文地址:https://jikaoti.com/ti/jjARFFFM
0
考研数学二
相关试题推荐
设X服从N(1,4),Y服从N(2,9),且X与Y相互独立,如果服从N(0,1),求常数a,b.
计算积分
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=.试求f(t).
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)a取何值时,此图形绕x轴旋转一周而
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
(08年)求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
随机试题
不符合湿性坏疽的描述是
下列关于体外冲击波碎石禁忌证的叙述,不正确的是()
A.高锝[99mTc]酸盐离子B.99mTc-HMPAOC.99mTc-MIBID.99mTc-DMSAE.99mTc-HL91被甲状腺、唾液腺以及消化腺摄取,可用于甲状腺功能测定和甲状腺显像的是
根据五行学说,金的特性为()。
房地产测绘包括房地产基础测绘和房地产项目测绘。()
必须参加工程竣工验收的单位有()。
甲公司只生产一种A产品,为了更好地进行经营决策和目标控制,该公司财务经理正在使用2019年相关数据进行本量利分析,有关资料如下:(1)2019年产销量为8000件,每件价格1000元。(2)生产A产品需要的专利技术需要从外部购买取得,甲公司每年除向技术
米、面、蛋类以煮蒸的烹饪方法为最好。
Hello,boysandgirls!Today,Iamgoingtotalkwithwhatyoushoulddowhenafirealarmgooff.Ifyouhearthealarm,stand
党的十八大报告指出,深化改革是加快转变经济发展方式的关键。经济体制改革的核心问题是
最新回复
(
0
)