首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是n个互不相同的数,b1,b2,…,bn是任意一组给定的数,证明:存在唯一的多项式f(x)=C0xn-1+C1xn-2+…+Cn-1,使得f(ai)=bi(i=1,2,…,n).
设a1,a2,…,an是n个互不相同的数,b1,b2,…,bn是任意一组给定的数,证明:存在唯一的多项式f(x)=C0xn-1+C1xn-2+…+Cn-1,使得f(ai)=bi(i=1,2,…,n).
admin
2017-06-14
28
问题
设a
1
,a
2
,…,a
n
是n个互不相同的数,b
1
,b
2
,…,b
n
是任意一组给定的数,证明:存在唯一的多项式f(x)=C
0
x
n-1
+C
1
x
n-2
+…+C
n-1
,使得f(a
i
)=b
i
(i=1,2,…,n).
选项
答案
设f(x)=C
0
x
n-1
+C
1
x
n-2
+…+C
n-1
即是该多项式,则有 [*] 上述非齐次线方程组因为其系数行列式为n阶范德蒙行列式,又因a
1
,a
2
,…,a
n
互不相同,故D
n
=V
b
≠0,由克莱姆法则知方程组存在唯一解(C
0
,C
1
,…,C
n-1
),故存在唯一的多项式f(x),使得f(a
i
)=b
i
(i=1,2,…,n).
解析
转载请注明原文地址:https://jikaoti.com/ti/iswRFFFM
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 C
y〞-4yˊ+4y=0的通解为y=(C1+C2x)e2x,由初始条件y(0)=1,yˊ(0)=2得C1=1,C2=0,则y=e2x,[*]
[*]
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设f(x)为连续函数,且且当x→0时,与bxk为等价无穷小,其中常数b≠0,k为某正整数,求k与b的值及f(0),证明f(x)在x=0处可导并求f’(0).
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
已知当x→0时是xn的同阶无穷小量,则n=_______.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
随机试题
《郑伯克段于鄢》是一篇典型的()
A.壁细胞B.主细胞C.胃幽门部的G细胞D.黏液细胞E.干细胞分泌促胃液素的是
A.35%B.40%C.55%D.60%E.80%男性细胞内液约占体重的
目前认为下述哪种疾病与胃癌的发生关系密切
吡那地尔作用于()通道。
结算参与人与其客户的证券划付应当()。
福禄贝尔认为教育的目的在于()。
红玉今年8岁,是儿童影星,收入很高。其父亲红军在征得红玉口头同意后,将红玉的报酬5000元以红玉名义赠与别人。对红军这一民事行为的表述正确的是()。
Thedesigningofasatelliteintheheavenlyenvironmentis_____aneasyjob.
它最大的特点就是感情丰富,歌唱和舞蹈巧妙结合。
最新回复
(
0
)