首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.
admin
2021-02-25
42
问题
设A=(a
ij
)
3×3
是实正交矩阵,且a
11
=1,b=(1,0,0)
T
,则线性方程组Ax=b的解是____________________.
选项
答案
(1,0,0)
T
解析
本题主要考查正交矩阵的性质和克拉默法则及矩阵的运算.
设
由题设知AA
T
=E,即
于是有1+a
2
12
+a
2
13
=1,所以a
12
=a
13
=0,从而
所以x=(1,0,0)
T
为Ax=b的解.
转载请注明原文地址:https://jikaoti.com/ti/ipARFFFM
0
考研数学二
相关试题推荐
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
已知α1,α2都是3阶矩阵A的特征向量.特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
求下列积分。设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x(f(y)dy。
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设f(x)在x=x0的某邻域U内有定义,在x=x0的去心邻域内可导,则下述命题:①f’(x0)存在,则f’(x)也必存在.②设f’(x)存在,则f’(x0)也必存在.③设f’(x0)不存在,则’(x0)也必不存在.④设f’(x)不存在,则’(x0)
设f(x)在x=0的某邻域内连续,若,则f(x)在x=0处().
随机试题
阳虚证多指脏腑功能活动低下、功能减退导致阳气不足,其证象与_______证相似。
蒸发流程中除沫器的作用主要是()。
A.肾癌B.肾结核C.肾盂肿瘤D.肾盂积液E.肾母细胞瘤
氯化聚乙烯(颗粒状)
提供不真实或者不完整统计资料的违法行为的基本特点是“与实际情况不一致”。()
暂时性差异是指资产或负债的账面价值与其计税基础之间的差额。下列各项中,成为暂时性差异的是()。
基金申购费、基金托管费由基金投资者直接支付。( )
一种针对某种疾病的新疗法在12个月的临床试验中使68%的患者病情有了明显改善,其中43%的患者痊愈。然而,通常采用的治疗方法也可在12个月内将38%的患者完全治愈。由于新疗法主要选择了那些症状比较严重的患者,因此有人认为这种新疗法在疗效方面比常用的疗法更
根据哈克曼和奥德海姆提出的工作特征模型,任何上作都可以五种客观工作特征的维度来描述:_____________、_____________、_____________、_____________和_____________。
A、Fiftyminutes.B、Twenty-fiveminutes.C、Anhourandaquarter.D、Anhourandfiveminutes.C
最新回复
(
0
)