首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×5阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程BX=0与ABX=0是同解方程组.
设A是m×5阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程BX=0与ABX=0是同解方程组.
admin
2020-03-05
35
问题
设A是m×5阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
,线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n一r(AB)≥n一r+1,r(AB)≤r一1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://jikaoti.com/ti/ilCRFFFM
0
考研数学一
相关试题推荐
设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=_________.
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是__________.
已知线性方程组则()
下列微分方程中(填序号)______是线性微分方程.
设矩阵A=,B=A2+5A+6E,则(1/5B)-1=_______.
若ae-x2+x为随机变量X的概率密度函数,则a=__________.
设A是n阶矩阵,下列命题错误的是().
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________.
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1,则下列说法正确的是
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
随机试题
下列哪项不符合正常胎盘剥离情况
下列关于基准收益率的表述中正确的是()。
关于现金结算的股份支付,等待期内每个资产负债表日应按授予日的公允价值计量,确认成本费用和相应的应付职工薪酬。()
关于电子计算机的特点,以下说法错误的是()。
根据下列资料,回答下列问题:以下是央行2015年年初公布的2014年金融统计数据报告。①2014年人民币贷款增加9.78万亿元,外币贷款增加582亿美元。2014年12月月末,本外币贷款余额86.79万亿元
A、 B、 C、 D、 C
Accordingtothepassage,—isthemostimportantfunctionofinstitutionsofhighereducation.Aseriousoutcomebroughtoutby
A、B、C、D、B
FiguringoutthecheapesttimetovisitDisneycanbea【K1】________(frighten)task,butonewomanfiguredoutaratherspeci
Robotsareusefulinexploringspacebecausetheycanworkintheconditionswhichexistinspace.Suchrobotsusuallylooklike
最新回复
(
0
)