首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2-α4,α3 +α4,α2+α3,2α1+α2+α3的秩是 ( )
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2-α4,α3 +α4,α2+α3,2α1+α2+α3的秩是 ( )
admin
2019-03-11
25
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则向量组2α
1
+α
3
+α
4
,α
2
-α
4
,α
3
+α
4
,α
2
+α
3
,2α
1
+α
2
+α
3
的秩是 ( )
选项
A、1
B、2
C、3
D、4
答案
C
解析
r(2α
1
+α
3
+α
4
,α
2
-α
4
,α
3
+α
4
,α
2
+α
3
,2α
1
+α
2
+α
3
)
(β
1
,β
2
,β
3
,β
4
,β
5
)=3.
[β
1
,β
2
,β
3
,β
4
,β
5
]=[α
1
,α
2
,α
2
,α
3
]
因
r(α
1
,α
2
,α
3
,α
4
)=4,故r(β
1
,β
2
,β
3
,β
4
,β
5
)=
转载请注明原文地址:https://jikaoti.com/ti/iGBRFFFM
0
考研数学三
相关试题推荐
设A,B分别为m×n及n×s矩阵,且AB=0.证明:r(A)+r(B)≤n.
设函数f(x)在x=0的某一邻域内具有二阶连续导数,且f(0)=0,fˊ(0)=0,证明绝对收敛.
若y1,y2,y3是二阶非齐次线性微分方程(1)的线性无关的解,试用y1,y2,y3表达方程(1)的通解.y〞+P(x)yˊ+Q(x)y=f(x)(1)
若λ1,λ2是矩阵A不同的特征值,α1是对应于λ1的特征向量,则α1不是λ2的特征向量.
已知一本书中每页印刷错误的个数X服从参数为0.2的泊松分布,写出X的概率分布,并求一页上印刷错误不多于1个的概率。
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设A,B是两个n阶实对称矩阵,并且A正定.证明:当|ε|充分小时,A+εB仍是正定矩阵.
(Ⅰ)求函数y(x)=1++…(一∞<x<+∞)所满足的二阶常系数线性微分方程;(Ⅱ)求(Ⅰ)中幂级数的和函数y(x)的表达式.
设一抛物线过x轴上两点(1,0)与(3,0).(Ⅰ)求证:此抛物线与两坐标轴围成图形的面积等于此抛物线仅与x轴围成图形的面积;(Ⅱ)求上述两平面图形分别绕x轴旋转一周所得旋转体的体积之比.
设A和B为任意两不相容事件,且P(A)P(B)>0,则必有()
随机试题
马伶在《鸣凤记》扮演的是
人体内具分化能力的最早的造血细胞是
A.阿米卡星B.万古霉素C.利福平D.盐酸克林霉素E.红霉素治疗耐甲氧西林金黄色葡萄球菌有效的药物是()。
戒毒用美沙酮的管理正确的是
超声雾化吸入操作,不正确的一项是
组距、组限和组中值之间的关系是()。
社会上一些不法分子使用淀粉片冒充包治百病的“神药”来蒙骗老人,可令人不解的是,很多受骗的老人在食用这些“神药”后病痛果然减轻了许多,这实际上是一种()。
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.求D的面积A;
Theitemscontainedintheparceldon’tcorrespond______thoseonthelistthataccompaniedit.
ThreemengottotheDoverRailwayStationafewminutesafternineo’clockoneevening.Theyaskedaguard,"Whattimeisthen
最新回复
(
0
)