首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-26
26
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 f′(x)=2+[*](x+lnx-1), 令f′(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f′(x)<0,f(x)单调减少;而当x>1时f′(x)>0,f(x)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/gywRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
A、 B、 C、 D、 C
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立,解此关于a,k的方程组可得a=-1,k=1.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
随机试题
静电感度是《烟花爆竹安全与质量》(GB10631)规定的主要安全性能检测项目之一。考虑使用工具与烟火药发生爆炸的概率之间的关系,在手工直接接触烟火药的工序中,对使用的工具材质有严格要求。下列材质工具中,不应使用的工具是()。
金属基底冠要顺同一个方向打磨的目的是A.便于操作B.放置磨料成分污染表面C.利于形成氧化膜D.防止瓷层变色E.形成较为规则的表面,防止瓷层烧结时产生气泡
施工企业实施整体项目管理的重要策划文件是()。
建设工程项目质量控制系统的质量责任界面,包括静态界面和动态界面。一般静态界面应根据( )来确定。
登记结算公司以参与人的()为单位生成清算数据。
财务分析中常见的财务比率有()
下列关于被审计单位经营失败和注册会计师审计失败的说法中,正确的是()。
1882年,法国《费里法案》确定的初等教育三大原则是()
学了教学理论后,你对教学理念有何新的领悟?对教学改革有何建议?对本书所阐述的教学理论有何意见?
Whereisthewoman?
最新回复
(
0
)