首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,a)T,β=(3,10,b,4)T,问: a,b取何值时,β可由α1,α2,α3线性表示,并写出此表达式。
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,a)T,β=(3,10,b,4)T,问: a,b取何值时,β可由α1,α2,α3线性表示,并写出此表达式。
admin
2018-04-12
32
问题
已知α
1
=(1,4,0,2)
T
,α
2
=(2,7,1,3)
T
,α
3
=(0,1,一1,a)
T
,β=(3,10,b,4)
T
,问:
a,b取何值时,β可由α
1
,α
2
,α
3
线性表示,并写出此表达式。
选项
答案
当b=2,a≠1时,r(A)=[*]=3,线性方程组Ax=β有唯一解,下面求此唯一解。 由以上增广矩阵变换可得线性方程组Ax=β的同解方程组为[*]解得唯一解为 x=(一1,2,0)
T
。故β能由α
1
,α
2
,α
3
线性表出为β=一α
1
+2α
2
。 当b=2,a=1时,r(A)=[*]=2<3,线性方程组Ax=β有无穷多解。求齐次线性方程组Ax=0的基础解系。 齐次线性方程组Ax=0的同解方程组为[*]基础解系所含向量的个数为n一r(A)=3—2=1,选x
2
为自由未知量,取x
2
=1,解得基础解系为ξ=(一2,1,1)
T
。取x
3
=0,解得的一个特解为η
*
=(一1,2,0)
T
,则由非齐次线性方程组解的结构可知,方程组Ax=β的通解为 x=kξ+η
*
=(一2k一1,k+2,k)
T
,k是任意常数。 则β能由α
1
,α
2
,α
3
线性表出,且表示法为无穷多(常数k可以任意),且 β=一(2k+1)α
1
+(k+2)α
2
+kα
3
。
解析
转载请注明原文地址:https://jikaoti.com/ti/gadRFFFM
0
考研数学二
相关试题推荐
设问当k为何值时,函数f(x)在其定义域内连续?为什么?
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
随机试题
抗感染的固有免疫又称为
如果明知是伪造的货币而持有、使用,并且数额较大的,也属犯罪行为。依照《最高人民检察院、公安部关于经济犯罪案件追诉标准的规定》,“数额较大”的标准是()
Theyoungmanhaddecidedtogiveupthechanceofstudyingabroad,______surprisedhisparentsalot.
对于腱器官的描述,恰当的是
点火升压阶段应该注意的安全事项有()。
下列关于金融理财工具的特点的说法中,错误的有()。
在非货币性资产交换中,损益的确认取决于是否支付补价。()
中国革命走农村包围城市,武装夺取政权道路的现实可能性是
两台交换机分别具有12个和16个100/1000Mbps全双工下联端口,它们的上联端口带宽至少应为()。
A、Thefoodiswastedduringtransportation.B、Peoplethereeateverythingtheybuy.C、Halfofthefoodisthrownaway.D、Allof
最新回复
(
0
)