首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
椭球面S1是椭圆=1绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转而成. (1)求S1及S2的方程. (2)求S1与S2之间的立体体积.
椭球面S1是椭圆=1绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转而成. (1)求S1及S2的方程. (2)求S1与S2之间的立体体积.
admin
2016-01-15
51
问题
椭球面S
1
是椭圆
=1绕x轴旋转而成,圆锥面S
2
是过点(4,0)且与椭圆
=1相切的直线绕x轴旋转而成.
(1)求S
1
及S
2
的方程.
(2)求S
1
与S
2
之间的立体体积.
选项
答案
(1)由题意得S
1
的方程为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/gKPRFFFM
0
考研数学一
相关试题推荐
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ)
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
求曲线Y=x3,x=1与x轴围成的封闭图形绕x=2旋转一周所得旋转体的体积.
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
证明:若单调函数f(x)在区间(a,b)内有间断点,则必为第一类间断点.
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得F(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)有界.
设函数f(x)在区间[-1,1]上有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在(一1,1)内至少存在一点ξ,使得f"’(ξ)=3.
计算二重积分,其中积分区域D是由y轴与曲线所围成。[img][/img]
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)确定,其中f可微,求的最简表达式.
随机试题
引起秋冬季婴幼儿腹泻的常见病因是
阅读小说的最后一段,回答以下问题:现在的七斤,是七斤嫂和村人又都早给他以相当的尊敬,相当的待遇了。到夏天,他们仍旧在自家门口的土场上吃饭,大家见了都笑嘻嘻的招呼。九斤老太早已做过八十大寿,仍然不平而且康健。六斤的双丫角,已经变成一支大辫子了;伊虽
药物制成粉针剂的主要目的
患者,男,70岁。喘促气短,声低气怯,咳声低弱,咳痰稀白。自汗畏风,舌淡红苔薄白,脉弱无力。治疗应首选()
下列关于期初余额审计的叙述中,正确的有()。
2×15年1月1日,甲公司取得乙公司5%的股权,将其划分为可供出售金融资产,取得成本为1000万元,2×15年12月31日,其公允价值为1200万元。2×16年3月1日,甲公司支付12000万元又取得乙公司48%的股权,能够对乙公司实施控制(属于非同一控制
大脑两半球()。
一位颇有名望的美国富商在散步时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”
我们写得最多的是月亮,我们喜欢山,喜欢江河。孔子说“仁者乐山,智者乐水”。这里面的“水”也是指江、湖。如果说孔子当年再说一句“勇者乐海”,我们的民族精神也许会更加丰满,也许就是另一种选择。庄子对海的定义是“量无穷,时无止,分无常,终始无故”,把海和无穷联系
Thefactthatblindpeoplecanseethingsusingotherpartsoftheirbodiesapartfromtheireyesmayhelpusunderstandourfee
最新回复
(
0
)