首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f’(η)+f(η)].
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f’(η)+f(η)].
admin
2022-10-09
31
问题
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e
2ξ-η
=(e
a
+e
b
)[f’(η)+f(η)].
选项
答案
令φ(x)=e
x
f(x),由微分中值定理,存在η∈(a,b),使得[f(b)-f(a)]/(b-a)=e
η
[f’(η)+f(η)],再由f(a)=f(b)=1,得(e
b
-e
a
)/(b-a)=e[f’(η)+f(η)],从而(e
2b
-e
2a
)/(b-a)=(e
a
+e
b
)e
η
[f’(η)+f(η)],令φ(x)=e
2x
,由微分中值定理,存在ξ∈(a,b),使得(e
2b
-e
2a
)/(b-a)=2e
2ξ
,即2e
2ξ
=(e
a
+e
b
)e
η
[f’(η)+f(η)],或2e
2ξ-η
=(e
a
+e
b
)[f’(η)+f(η)].
解析
转载请注明原文地址:https://jikaoti.com/ti/gFfRFFFM
0
考研数学三
相关试题推荐
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设实二次型f(x1,x2,x3)=xTAx的秩为2,且α1=(1,0,0)T是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解.写出该二次型;
设3元实二次型f(x)=xTAx经正交变换x=Cy化成是Ax=0的解向量.求A;
设矩阵已知A的一个特征值为3.试求y;
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
(1)证明当|x|充分小时,不等式0≤tan2x-x2≤x4成立;(2)设求
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设F(x)是f(x)的一个原函数,且当x>0时,满足f(x)F(x)=,F(x)<0,F(0)=一1.求f(x)(x>0).
设函数f(x)有连续的导数,且f(0)=0,f’(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当n→0时,函数F’(x)与xk为同阶无穷小,则k等于().
随机试题
常用的输入设备有键盘、鼠标、扫描仪、麦克风及()
下列哪些选项不构成犯罪中止?()
在工程网络计划中,关键线路是指()的线路。
我国增值税基本税率为17%,但对于一些关系到国计民生的重要物资,增值税税率较低,为13%,在下列选项中,增值税是13%的是()。
在依法冻结单位存款时,如遇被冻结单位银行账户的存款不足冻结金额时,应当在十二个月的冻结期内,冻结该单位可以冻结的存款,直至达到需要的冻结金额。()
紧急事件能否发生、何时何地发生、以什么方式发生,发生的程度如何,均是难以预料的,具有极大的()。
具体化技术的作用在于()。
在教学活动中,老师不要求初中生记笔记,对高中生只要求记讲课要点,这是基于()
1956年我国工业国民收入为()。下列说法中正确的一项是()。
工程数据库管理上的三个技术难点是:数据多样性、数据可变性和【】。
最新回复
(
0
)