首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,除个别点外二阶可导,其导函数y=f’(x)的图像如右图(1),令函数y=f(x)的驻点的个数为p,极值点的个数为q,曲线y=f(x)拐点的个数为r,则
设函数f(x)连续,除个别点外二阶可导,其导函数y=f’(x)的图像如右图(1),令函数y=f(x)的驻点的个数为p,极值点的个数为q,曲线y=f(x)拐点的个数为r,则
admin
2019-01-25
27
问题
设函数f(x)连续,除个别点外二阶可导,其导函数y=f’(x)的图像如右图(1),令函数y=f(x)的驻点的个数为p,极值点的个数为q,曲线y=f(x)拐点的个数为r,则
选项
A、p=q=r=3.
B、p=3,q=r=2.
C、p=3,q=2,r=3.
D、p=3,q=2,r=1.
答案
C
解析
设a,b,c,d,e各点如图,
根据驻点,极值点,拐点的概念及判别法知:驻点是:x=a,c,e.因为x=a,c,e时,f’(x)=0.p=3.驻点中只有x=a,c是极值点,因为x=a,c两侧导数变号.x=e两侧导数均负,f(x)是单调下降的,x=e不是极值点.x=b是f(x)的连续而不可导点,x=b两侧的导数均正,x=b也不是f(x)的极值点.q=2.
(x
0
,f(x
0
))为拐点的必要条件是:f’’(x
0
)=0或f’’(x
0
)不
,即f’’(x
0
)
时x=x
0
是f’(x)的驻点.x=d,e是f’(x)的驻点且这些点的两侧f’(x)的单调性相反即y=f(x)的图形的凹凸性相反,(d,f(d)),(e,f(e))是拐点.f’’(b)不
,但x=b是f(x)的连续点,x=b两侧f’(x)的单调性相反,因而(b,f(b))也是拐点.r=3.
综上分析,应选C.[img][/img]
转载请注明原文地址:https://jikaoti.com/ti/g31RFFFM
0
考研数学一
相关试题推荐
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
设二维随机变量(X,Y)的联合密度f(x,y)=.求c;
计算曲线积分,从z轴正向看,C为逆时针方向.
将f(x)=展开成傅里叶级数.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设随机变量X,Y相互独立,且X~,又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设X1,X2,…,Xn是来自正态总体X~N(μ,σ2)的简单随机样本,记,.则服从t(n-1)分布的随机变量是().
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后放回;
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:(1)两个球中一个是红球一个是白球;(2)两个球颜色相同.
随机试题
特别潮湿场所、导电良好的地面、锅炉或金属容器内的照明,电源电压不得大于()。
属于猫爪草功效的有
某市新办一饮料厂,市政府工业主管部门尽力扶持。该主管部门经市政府同意,决定对饮料厂免征企业所得税3年,并函告市地税局执行。地税局经审查饮料厂的纳税条件,认为不应免税。在此情况下,市地税局的正确做法是:()
账户的基本结构分为左、有两个方向,左方登记增加,右方登记减少。()
下列关于合同的特征,正确的有()。
某超市因食品安全事故被当地工商局作出以下处理:(1)查封假烟假酒共计200箱;(2)暂扣超市的营业执照;(3)罚款5000元。上述决定中属于行政强制措施的是:
AAttractionsofTravellingBLanguageProblemWhenEatingOutCRevolutionCausedbyJetsDHowTravellers’ConcernsAreMe
YOURBUILDINGSERVICE√Wehelppeopleinthispartofthecityby:checkingallplans(方案)beforepeoplebuildnewhous
Itisimperativethat,he______fullchargeofthejointproject.
Oncetheydecidedtohavechildren,MiShelandCarlMeissnertackledthenextbigissue:Shouldtheytrytohaveagirl?Itwas
最新回复
(
0
)