设D={(r,θ)|2≤r≤2(1+cosθ),一π/2≤θ≤π/2},f(x,y)在R2上连续,且满足f(x,y)=x+yf(x,y)dxdy,求f(x,y)及I=xf(x,y)dxdy

admin2022-06-09  27

问题 设D={(r,θ)|2≤r≤2(1+cosθ),一π/2≤θ≤π/2},f(x,y)在R2上连续,且满足f(x,y)=x+yf(x,y)dxdy,求f(x,y)及I=xf(x,y)dxdy

选项

答案如图所示,由D关于x轴对称,知[*]ydxdy=0 记A=[*]f(x,y)dxdy([*]f(x,y)dxdy是一个常数),则已知等式可化为f(x,y)=x+Ay,故 A=[*]f(x,y)dxdy=[*]dxdy+A[*]ydxdy =∫-π/2π/2dθ∫22(1+cosθ)rcosθ·rdr+0 =8/3∫-π/2π/2[(1+cosθ)-1]cosθdθ =16/3∫0π/2(3cos3θ+3cos3θ+cos4θ)dθ =16/3(2+15π)=32/3+5π 于是 f(x+y)=x+(32/3+5π)y I=[*]xf(x,y)dxdy=[*][x2+(32/3+5π)xy]dxdy 由x2+y2≤1关于y=x对称,xy关于x是奇函数,可知 I=[*]x2dxdy=1/2[*](x2+y2]dxdy =1/2∫0dθ∫01r2·rdr=1/2×2π×1/4=π/4 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/fbhRFFFM
0

最新回复(0)