首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,f’(0)=0,证明:在区间(0,1)内至少有一点ξ,使f”(ξ)-f(ξ)=0.
已知f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,f’(0)=0,证明:在区间(0,1)内至少有一点ξ,使f”(ξ)-f(ξ)=0.
admin
2022-06-04
48
问题
已知f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,f’(0)=0,证明:在区间(0,1)内至少有一点ξ,使f”(ξ)-f(ξ)=0.
选项
答案
令G(x)=f(x)e
-x
,则G(x)在[0,1]上连续,在(0,1)内可导,且G(0)=G(1)=0.根据罗尔定理得,至少存在一点η∈(0,1),使得G’(η)=0,即 [f’(η)-f(η)]e
-η
=0 故有f’(η)-f(η)=0. 令F(x)=[f’(x)-f(x)]e
x
,因为f(x)在[0,1]上连续,在(0,1)内可导,所以F(x)在[0,7]上连续,在(0,η)内可导,且F(0)=F(η)=0.由罗尔定理知,至少存在一点ξ∈(0,1),使得F’(ξ)=0. 由F’(x)=[f”(x)-f(x)]e
x
得,F’(ξ)=[f”(ξ)-f(ξ)]e
ξ
,故在区间(0,1)内至少有一点ξ,使得f”(ξ)-f(ξ)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/eIfRFFFM
0
考研数学三
相关试题推荐
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(—1.1,0,2)T+k(1,—1,2,0)T,则β能否由α1,α2,α3线性表示?为什么?
设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,Xn为来自总体X的简单随机样本记,其中a为常数,若E(T)=λ2,则a=().
设3维向量α4不能由向量组α1,α2,α3线性表示,则必有().
设f(x,y)连续,且,其中D={(x,y)|0≤x≤1,0≤y≤1},则=().
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不可由α1,α2,α3线性表示,则对任意常数k,必有().
设α为n维非零列向量,A=E-ααT.(1)证明:A可逆并求A-1;(2)证明:α为矩阵A的特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设f(x)=,则x=0为f(x)的________间断点.
将函数f(x)=arctan展开成x的幂级数.
设f(x),g(x)在(-∞,+∞)上有定义,且x=x1是f(x)的唯一间断点,x=x2是g(x)的唯一间断点,则()
随机试题
化脓性脑膜炎治疗中,哪项错误
胃食管反流病的治疗措施包括
风心病患者近来低热,有助于诊断风湿活动的体征是
某建设项目由于涉及深基坑工程,总包单位依法分包给专业工程公司,对于编制专项施工方案,下列说法中正确的是()。
超额存款准备金与实际存款准备金之间的数量关系为()。
根据波特的五力模型,可能对蜀豆园生产的绿豆糕构成替代威胁的是()。
真理是绝对的,也是相对的。()
风水在古代其实包含有很深的科学成分,“依山而建,傍水而居”、“面南背北,坐北朝南”几千年流传下来,若非其有着极强的______价值,到今天也不至于被建筑商和民间如此______。填入划横线处最恰当的一项是()。
InSeptember,morethanadozenwhalesbeachedthemselvesintheCanaryIslands.Rescuerstriedtowaterdownthewhalesandkee
ImaginebeingaslaveinancientRome.Nowrememberbeingone.Thesecondtask,unlikethefirst,iscrazy.If,asI’mguessing,
最新回复
(
0
)