设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).

admin2016-07-22  36

问题 设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).

选项

答案(1)∫Lf(x,y)dx+xcosydy在全平面与路径无关[*]积分得f(x,y)=siny+C(x). (2)求f(x,y)转化为求C(x). [*] f(x,y)=siny+2x-sinx2-2x2cosx2

解析
转载请注明原文地址:https://jikaoti.com/ti/e4PRFFFM
0

最新回复(0)