设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式 ∫1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:

admin2022-03-23  48

问题 设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式
1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:

选项

答案由上一问得知,f(xy)=ln(xy)+1 画出复合结构图 [*] 令G(x,y)=F[xex+y,ln(xy)+1]-x2-y2 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/dkfRFFFM
0

随机试题
最新回复(0)