首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知p=是矩阵A=的一个特征向量. 问A能不能相似对角化?并说明理由.
已知p=是矩阵A=的一个特征向量. 问A能不能相似对角化?并说明理由.
admin
2020-11-13
24
问题
已知p=
是矩阵A=
的一个特征向量.
问A能不能相似对角化?并说明理由.
选项
答案
A=[*] 因此A的特征值为λ
1
=λ
2
=λ
3
=一1, [*] 因此R(A+E)=2.因此λ
1
=λ
2
=λ
3
=一1对应的特征向量的最大无关组所含向量个数是1个,因此A不可相似对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/daaRFFFM
0
考研数学三
相关试题推荐
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
(98年)设矩阵A=矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
设E为四阶单位矩阵,且B=(E+A)-1(E-A)则(E+B)-1=_____________.
设n阶矩阵则|A|=_________.
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
设α1,α2,…,αm与β1,β2,…,βS为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βS)一r,则().
设A是3阶矩阵,将A的第2行加到第1行上得曰,将B的第1列的一1倍加到第2列上得C.则C=().
随机试题
A.控涎丹B.大陷胸汤C.舟车丸D.十枣汤泻热逐水的方剂是
下列费用中,属于取得国有土地使用权应支付的费用有()。
基金销售机构收取增值服务费的.应当符合的要求不包括?()
某公司只生产电脑、手机两种产品,且均使用“HAIER”这一品牌销售,这种品牌战略属于()。
“厄尔尼诺”的显著特征是指()。
在()时期,我国就会制陶器。
四方连续纹样
对同一目标接连进行3次独立重复射击,假设至少命中目标一次的概率为7/8,则单次射击命中目标的概率p=______.
有以下程序main(){charp[]={’a’,’b’,’c},q[]="abc";printf("%d%d\n",sizeof(p),sizeof(q));}程序运行后输
下列叙述中正确的是()。
最新回复
(
0
)