首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是n个n维的线性无关向量组,αn+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明α1,α2,…,αn,αn+1中任意n个向量线性无关。
设α1,α2,…,αn是n个n维的线性无关向量组,αn+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明α1,α2,…,αn,αn+1中任意n个向量线性无关。
admin
2019-03-23
23
问题
设α
1
,α
2
,…,α
n
是n个n维的线性无关向量组,α
n+1
=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,其中k
1
,k
2
,…,k
n
全不为零。证明α
1
,α
2
,…,α
n
,α
n+1
中任意n个向量线性无关。
选项
答案
选取α
i
之外的n个向量为例。 令λ
1
α
1
+…+λ
i—1
α
i—1
+λ
i+1
α
i+1
+…+λ
n
α
n
+λ
n+1
α
n+1
=0,即(λ
1
+λ
n+1
k
1
)α
1
+…+(λ
i—1
+λ
n+1
k
i—1
)α
i—1
+λ
n+1
k
i
α
i
+(λ
i+1
+λ
n+1
k
i+1
)α
i+1
+…+(λ
n
+λ
n+1
k
n
)α
n
=0。 因为α
1
,α
2
,…,α
n
线性无关,所以必有λ
n+1
k
i
=0,而k
i
≠0,则λ
n+1
=0,故由λ
1
+λ
n+1
k
1
=0,…,λ
i—1
+λ
n+1
k
i—1
=0,λ
i+1
+λ
n+1
k
i+1
=0,…,λ
n
+λ
n+1
k
n
=0,立即得λ
1
=λ
2
=…=λ
i—1
=λ
i+1
=…=λ
n+1
=0,所以α
1
,α
2
,…,α
i—1
,α
i+1
,…,α
n
,α
n+1
线性无关。
解析
转载请注明原文地址:https://jikaoti.com/ti/dSLRFFFM
0
考研数学二
相关试题推荐
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A为实矩阵,证明r(ATA)=r(A).
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
证明:r(A)=r(ATA).
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
下列说法正确的是().
随机试题
工程量是指以物理计量单位或自然计量单位所表示的建筑工程各个分项工程和结构构件的实物数量。()
根据《建设工程项目管理规范》(GB/T50326-2006),施工方项目经理的管理权限包括()等。
某工地按现行国家标准《通用阀门压力试验》GB/T13927《自动喷水灭火系统第6部分:通用阀门》GB5135.6的要求,对消防用碟阀开展进行检验。下列检查项目中,不属于进行检验项目的是()。
债务人不能清偿到期债务申请破产的,下列说法正确的有()。
下列关于个人独资企业解散后原投资人责任的表述中,符合《个人独资企业法》规定的是()。(2012年)
我国著名的云海景观有()。
19世纪中期欧洲资产阶级革命和改革潮流所承担的最重要的历史使命是()。
课外、校外教育中具有普遍性的组织形式是()。
(2017·江苏)小雪最近情绪低落,思维迟缓,活动减少,容易自我否定,甚至有自杀的冲动,她的问题可能是()
Generallyspeaking,aBritishiswidelyregardedasaquiet,shyandconservativepersonwhois(1)_____onlyamongthosewithw
最新回复
(
0
)