设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.

admin2016-01-15  32

问题 设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.

选项

答案因为t|t|为奇函数,可知其原函数 f(x)=∫—1xt|t|dt=∫—10t|t|dt+∫0xt|t|dt 为偶函数,即由f(一1)=0,得f(1)=0,即y=f(x)与x轴有交点(一1,0),(1,0). 又由f’(x)=x|x|,可知x<0时,f’(x)<0,故f(x)单调减少,从而f(x)<f(一1)=0(一1<x≤0);当x>0时,f’(x)=x|x|>0,故f(x)单调增加,且y=f(x)与x轴有一交点(1,0).综上,y=f(x)与x轴交点仅有两个. 所以封闭曲线所围面积 A=∫—11|f(x)|dx=2∫—10|f(x)|dx [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/dKPRFFFM
0

最新回复(0)