首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
admin
2016-11-03
36
问题
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
选项
答案
设A=[*],其中α
j
为A的行向量,B=[b
ij
]
r×r
,则BA=[*],其中β
j
为BA的行向量,则 [*] 因α
1
,α
2
,…,α
r
线性无关,且B为满秩矩阵,即 r(B)=r=向量组(β
1
,β
2
,…,β
r
)的个数, 故β
1
,β
2
,…,β
r
线性无关. 因α
j
为某齐次线性方程组的基础解系,则因β
1
,β
2
,…,β
r
均为α
1
,α
2
,…,α
r
的线性组合,故β
1
,β
2
,…,β
r
也必为该齐次线性方程组的r个解.又它们线性无关,所以β
1
,β
2
,…,β
r
即BA的r个行向量也为该齐次方程组的一个基础解系.
解析
将矩阵A,B的行向量组的关系转化为矩阵关系证之.
转载请注明原文地址:https://jikaoti.com/ti/cKwRFFFM
0
考研数学一
相关试题推荐
[*]
10π
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设二二次型f(x1,x2,x3)=XTAX=ax12+2x22+(﹣2x32)+2bx1x3(b>0),其中二次矩阵A的特征值之和为1,特征值之积为﹣(I)求a,b的值;(II)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为。
随机试题
Withcloud,mobility,bigdataandconsumerization,companiesareinevengreaterneedoftechnologytalentthantheywereinth
女性,24岁,2年来有发作性神志丧失,四肢抽搐,服药不规则。今日凌晨开始又有发作,意识一直不清醒。来院后又有一次四肢抽搐发作
测pH值时,产生碱误差的条件是《中国药典》(2000年版)规定制备标准缓冲液与供试品溶液的水应是新沸过的冷蒸馏水,其pH值是
施工单位应急预案未按规定备案的,由县级以上安全生产监督管理部门()。
建设工程质量监督机构进行第一次施工现场监督检查的重点是()。[2011年真题]
根据《合同法》的规定,下列各项中,不属于要约失效的情形的是( )。
管理会计基本指引在管理会计指引体系中起统领作用,是制定应用指引和建设案例库的基础。()
根据反垄断法律制度的规定,下列对反垄断民事诉讼的表述中,不正确的是()。
某年的3月份有5个星期二,4个星期三,那么这一年的5月20日是星期几?()
当临时联系不再需要时可以取消,取消的命令是()。
最新回复
(
0
)