位于上半平面的上凹曲线y=y(χ)过点(0,2),在该点处的切线水平,曲线上任一点(χ,y)处的曲率与及1+y′2之积成反比,比例系数k=,求y=y(χ).

admin2019-06-06  38

问题 位于上半平面的上凹曲线y=y(χ)过点(0,2),在该点处的切线水平,曲线上任一点(χ,y)处的曲率与及1+y′2之积成反比,比例系数k=,求y=y(χ).

选项

答案根据题意得 [*] 令y′=p,则有[*]解得[*],因为p(2)=0,所以C1=0, 故y′=p=±[*],进一步解得[*],因为y(0)=2,所以C2=0,故曲线方程为y=[*]+2.

解析
转载请注明原文地址:https://jikaoti.com/ti/c9LRFFFM
0

最新回复(0)