首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P-1AP为对角形矩阵.
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P-1AP为对角形矩阵.
admin
2017-10-19
50
问题
设矩阵
已知A有3个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P
-1
AP为对角形矩阵.
选项
答案
因为矩阵A有3个线性无关的特征向量,而λ=2是其二重特征值,故λ=2必有2个线性无 关的特征向量,因此(2E-A)x=0的基础解系由2个解向量所构成.于是r(2E-A)=1.由 [*] 那么,矩阵[*]由此,得矩阵A的特征多项式为 [*]=(λ-2)
2
(λ-6), 于是得到矩阵A的特征值:λ
1
=λ
2
=2,
3
=6. λ=2,(2E-A)x=0,[*] 得到相应的特征向量为α
1
(1,-1,0)
T
,α
2
=(1,0,1)
T
. 对λ=6,由(6E-A)x=0,[*] 得到相应的特征向量为α
3
=(1,-2,3)
T
. 那么, 令P=(α
1
,α
2
,α
3
)=[*], 有P
-1
AP=A=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/c0SRFFFM
0
考研数学三
相关试题推荐
=__________
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn,α1线性无关.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
设,则α1,α2,α3经过施密特正交规范化后的向量组为
设n阶矩阵A与对角矩阵合同,则A是().
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示?(2)a,b为什么数时,β可用α1
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
随机试题
下面句中画线的词用法不同于其它三项的一项是()。
患儿,男,1岁。突发声音嘶哑,犬吠样咳嗽,吸气性喉鸣和三凹征,患儿烦躁,口周发绀。查体:体温38.4℃,咽充血,吸气性呼吸困难,肺无湿啰音,间接喉镜检查可有声带肿胀,声门下黏膜呈梭形肿胀。该患儿最主要的护理问题是()
下列哪种类型阴茎鳞状细胞癌易累及海绵体,侵犯淋巴管静脉
下列有关临终关怀的特点,说法正确的是
长期服用可致肌酸激酶升高的药物
《医疗机构制剂许可证》中()变更属于许可事项变更
商业银行必须将操作风险的评估系统整合到日常风险管理流程中是操作风险高级计量法的定量标准。()
成都是一个以纺织工业为中心的城市,改革开放后,各方面领导与专家对其劳动力市场的状况进行分析研究,发现以下几个方面的情况:第一,我国和外国有些国家之间的贸易纠纷得到解决,该市的纺织产品在国际市场上的需求大增;第二,失业者成为非劳动力,非劳动力成为就业者流量加
无论是相比国际发展规律还是国内人均收入水平,无论是相比产业成长速度还是持续扩大的消费需求,我国文化消费量总体上仍处于较低水平,存在明显的消费缺口。面对巨大的发展空间,为国人提供什么标准与质量的文化消费品就显得尤为重要,它不仅关系到我国文化消费发展如何实现快
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
最新回复
(
0
)