首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
admin
2017-08-31
27
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g
’
(x)≠0.证明:存在ξ∈(a,b),使得
选项
答案
令F(x)=f(x)g(b)+f(a)g(x)-f(x)g(x),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=f(a)g(b),由罗尔定理,存在ξ∈(a,b),使得F
’
(ξ)=0,而F
’
(x)=f
’
(x)g(b)+f(a)g
’
(x)一f
’
(x)g(x)一f(x)g
’
(x),所以[*].
解析
这是含端点和ξ的项的问题,且端点与含ξ的项不可分离,具体构造辅助函数如下:把结论中的ξ换成x得
,整理得f
’
(x)g(b)+f(a)g
’
(x)一f
’
(x)g(x)一f(x)g
’
(x)=0,
还原得[f(x)g(b)+f(a)g(x)一f(x)g(x)]
’
=0,
辅助函数为F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x).
转载请注明原文地址:https://jikaoti.com/ti/baVRFFFM
0
考研数学一
相关试题推荐
设函数y=y(x)由xy=∫0x|ydt确定,则
设f,φ分别具有二阶连续导数和二阶连续偏导数,则=_____
设f(x)∈C[一1,1],且(一1,1)内有f"(x)>0且证明:当x∈(一1,1)时,f(x)≥3x.
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
n维列向量组α1,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
设函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
设矩阵可逆,为A*对应的特征向量.判断A可否对角化.
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
设函数f(x)在x=0处连续,下列命题错误的是
随机试题
女孩3岁,发热伴咳嗽3~4天,今出皮疹,外院拟诊药物疹,口服阿司咪唑,回家后病情变化,咳嗽加剧,来院就诊。体检:体温39℃,气急,鼻煽动,唇周青紫,两结膜红,口腔黏膜粗糙,心率160次/分,心音低钝,两肺闻及细湿啰音,肝肋下3.5cm,剑下4cm,头躯干可
A.细动脉玻璃样变性B.夹层动脉瘤形成C.冠状动脉血栓形成D.细动脉壁纤维素样坏死E.小动脉化脓菌栓塞良性高血压病的病理改变有
下列药物中,性味苦涩寒,归肺、肝、脾经的是()。
激发和维持个体进行活动并导致该活动朝向某一目标的心理动力称为
下颌运动异常、疼痛、弹响和杂音是以下哪类疾病的主要症状
A.温中补虚,理气健脾B.温中补虚,和里缓急C.温中补虚,降逆止痛D.温中补虚,降逆止呕E.温中补虚,散寒止痛吴茱萸汤的功用是
邀请招标,也称(),指()。
在通货膨胀率很低的情况下,公司债券的利率可视同为货币时间价值。()
建立成功的MIS有两个先决的条件:一个是指定好系统的开发策略;二是企业管理______。
Onlyinthisway______workoutthismathproblem.
最新回复
(
0
)