首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知fn(x)满足微分方程f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,则级数fn(x)的和为________.
已知fn(x)满足微分方程f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,则级数fn(x)的和为________.
admin
2017-05-18
21
问题
已知f
n
(x)满足微分方程f’
n
(x)=f
n
(x)+x
n-1
e
x
(n为正整数),且f
n
(1)=
,则级数
f
n
(x)的和为________.
选项
答案
-e
x
ln(1-x),x∈[-1,1)
解析
本题主要考查一阶微分方程的解与幂级数的和函数.首先求一阶微分方程的解.
由已知条件知f
n
(x)满足的微分方程可写成
这是一阶线性微分方程的初值问题,可以用一阶线性微分方程的通解公式求其通解,也可以用下面简便方法:
将方程两边乘以e
-x
,得
f’
n
(x)e
-x
-e
-x
f
n
(x)=x
n-1
,
于是 [f
n
(x)e
-x
]’=x
n-1
,
等式两边积分,得 f
n
(x)e
-x
=∫x
n-1
dx,
即 f
n
(x)e
x
=
x
n
+C,
f
n
(x)=e
x
由f
n
(1)=
,得C=0.故f
n
(x)=
x
n
e
x
.
其次求级数
f
n
(x)的和.
令s(x)=
,则
等式两边从0到x积分,得
即 s(x)=-ln(1-x), x∈(-1,1).
因为当x=-1时,s(x)=-ln(1-x)连续,而
收敛,所以
转载请注明原文地址:https://jikaoti.com/ti/bCwRFFFM
0
考研数学一
相关试题推荐
曲面(z-a)ψ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=________(其中φ为连续正值函数,a>0,b>0).
[*]
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后抽出两份.(I)求先抽到的一份是女生的概率p;(Ⅱ)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q.
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max|X,Y|≤1}=_______.
若矩阵A3×3的特征值为1,2,3,则下列矩阵中必定可逆的是().
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
极限=__________.
随机试题
按钢中()的多少,合金钢分为低合金钢、中合金钢和高合金钢3类。
以下不属于机械转向系组成的是()。
克罗恩病的治疗目的包括
绒毛膜癌经血行最常转移到
A.心脏性猝死前驱期B.心脏性猝死终末事件开始C.心脏性猝死心脏骤停期D.心脏性猝死生物学死亡期E.非心脏性猝死
某企业领用材料一批,直接投入某产品的生产,在作账务处理时,与“材料”账户发生对应关系的账户是()。
下列选项中不符合实施行政许可特别程序的规定的是( )。
(2013年)企业积极分析生产效率低的原因,并优化工序保证生产目标实现,企业的这些活动属于()。
FannieMae&FreddieMac
为让利消费者,提供更优惠的服务,某大型收费停车场规划调整收费标准,拟从原来“不足15分钟按15分钟收费”调整为“不足15分钟部分不收费”的收费政策。市场部抽取了5月26日至6月1日的停车收费记录进行数据分析,以期掌握该项政策调整后营业额的变化情况。请根据考
最新回复
(
0
)