(99年)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=f(x)为曲边的曲边梯形面积记为S2,并设2

admin2018-07-27  27

问题 (99年)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=f(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒为1,求此曲线y=y(x)的方程.

选项

答案曲线y=y(x)上点P(x,y)处切线方程为 Y—y=y’(x)(X—x) 它与x轴的交点为[*],由于y’(x)>0,y(0)=1,从而y(x)>0,于是 [*] 又 S2=∫0xy(t)dt 由条件 2S1一S2=1知 [*] 两边对x求导并化简得 yy”=(y’)2 令y’=P,则上述方程化为 [*] 注意到y(0)=1,由(*)式可知y’(0)=1,由此可得C1=1,C2=0,故所求曲线方程为y=ex

解析
转载请注明原文地址:https://jikaoti.com/ti/b5WRFFFM
0

最新回复(0)