设f(x)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,ff(x)≥0,f(x)≥f’(x)(>0),求证:f(x)≡0.

admin2018-06-27  31

问题 设f(x)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,ff(x)≥0,f(x)≥f’(x)(>0),求证:f(x)≡0.

选项

答案由f’(x)-f(x)≤0,得e-x[f’(x)-f(x)]=[e-xf(x)]’≤0. 又f(x)e-xx=0=0,则f(x)e-x≤f(x)e-xx=0=0.进而f(x)≤0(x∈[0,+∞)), 因此f(x)≡0([*]∈[0,+∞)).

解析
转载请注明原文地址:https://jikaoti.com/ti/audRFFFM
0

随机试题
最新回复(0)