首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,Ax=0有基础解系ξ1=(1,3,0,2)T,ξ2=(1,2,-1,3)T;Bx=0有基础解系η1=(1,1,2,1)T,η2=(0,-3,1,+1)T. (Ⅰ)求矩阵A; (Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并
已知A,B均是2×4矩阵,Ax=0有基础解系ξ1=(1,3,0,2)T,ξ2=(1,2,-1,3)T;Bx=0有基础解系η1=(1,1,2,1)T,η2=(0,-3,1,+1)T. (Ⅰ)求矩阵A; (Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并
admin
2019-01-24
37
问题
已知A,B均是2×4矩阵,Ax=0有基础解系ξ
1
=(1,3,0,2)
T
,ξ
2
=(1,2,-1,3)
T
;Bx=0有基础解系η
1
=(1,1,2,1)
T
,η
2
=(0,-3,1,+1)
T
.
(Ⅰ)求矩阵A;
(Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并求该非零公共解.
选项
答案
(Ⅰ)记C=(ξ
1
,ξ
2
),则AC=A(ξ
1
,ξ
2
)=0,两边转置得C
T
A
T
=0. 所以矩阵A的行向量即AT的列向量是CTX一0的解,对CT作初等行变换,有 [*] 解得C
T
x=0的基础解系为α
1
=(3,-1,1,0)
T
,α
2
=(-5,1,0,1)
T
. 所以A=k
1
α
1
+k
2
α
2
=[*] 其中k
1
,k
2
是任意非零常数. (Ⅱ)设Ax=0和Bx=0有非零公共解,为δ,则δ可由ξ
1
,ξ
2
线性表出,也可由η
1
,η
2
线性表出, 设为 δ=x
1
ξ
1
+x
2
ξ
2
=-x
3
η
1
=x
4
η
4
, 得 x
1
ξ
1
+x
2
ξ
2
+x
3
η
1
+x
4
η
2
=(ξ
1
,ξ
2
,η
1
,η
2
)x=0. 对(ξ
1
,ξ
2
,η
1
,η
2
)作初等行变换,有 [*] 因为δ≠0,故(ξ
1
,ξ
2
,η
1
,η
2
)x=0有非零解,[*],故当a=-1时,(ξ
1
,ξ
2
,η
1
,η
2
)x=0有非零解为k(2,-1,-1,1)
T
,其中k是非零常数. δ=k(2ξ
1
-ξ
2
)=k(1,4,1,1)
T
(或δ=k(η
1
-η
2
)),其中k是非零常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/aC1RFFFM
0
考研数学一
相关试题推荐
设f(x)在(一1,1)内具有二阶连续导数,且f"(x)≠0.证明:(1)对于任意的x∈(一1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立.(2).
设A=I一ξξT,其中I是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ一1)f(ξ)=0.
改变积分次序并计算.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛.
某种元件使用寿命X~N(μ,102),按照客户要求该元件使用寿命不能低于1000h,现从该批产品中随机抽取25件,其平均使用寿命为=995,在显著性水平α=0.05下确定该批产品是否合格?
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2。求此时的D1+D2.
求微分方程的通解.
设f(x)在x=a的邻域内有定义,且f+’(a)与f-’(a)都存在,则().
计算n阶行列式:Dn==_______.
随机试题
在横断层面上,第1骶椎前方的神经血管不包括
档案记录收集法中资料的来源有()
班级授课制
以下关于阻塞性黄疸的疾病不包括
护士办理执业注册变更后,其执业许可期限是()。
下列各项中,能够导致企业盈余公积减少的是()。
下列哪些情形一定会导致申请专利的发明创造丧失新颖性?
旅游团计划在北京停留五晚,黄先生夫妇原定与在京朋友活动,最后一晚归队。但一天后他们突然归队。对此,地陪应持的态度是()。
通称为中国古典小说四大名著的是()。
关于公务员是否可以兼职的问题,下列说法正确的有()。
最新回复
(
0
)