设三角形三边的长分别为a,b,c,此三角形的面积设为S,求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.

admin2019-08-27  80

问题 设三角形三边的长分别为a,b,c,此三角形的面积设为S,求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.

选项

答案设P为三角形内的任意一点,该点到边长分别为a,b,c的边距离分别为x,y,z.由三角形的面积公式,有 [*] 求f=xyz在约束条件ax+by+cz-2S=0下的最大值,构造拉格朗日函数,令 [*] 由 [*] 解得唯一驻点为x=2S/3a,y=2S/3b,z=2S/3c, 显然,当P位于三角形的边界上时,f=0,为最小值;当P位于三角形内部时,f存在最大值,由于驻点唯一,故当x=2S/3a,y=2S/3b,z=2S/3c时,f最大, [*]

解析 【思路探索】由题设条件构造出拉格朗日函数,再求出极值即可.
转载请注明原文地址:https://jikaoti.com/ti/ZqtRFFFM
0

最新回复(0)