设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f’(0).

admin2019-08-12  44

问题 设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f’(0).

选项

答案F(x)=∫0xtf(t2-x2)dt=[*]∫0xf(t2-x2)d(t2-x2) =[*]∫-x22f(u)du =[*]∫0-x2f(u)du, [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/x7ERFFFM
0

最新回复(0)