f(x)在[0,b]上连续,在(0,b)内可导,f(0)=0,证明:在(0,b)内至少存在一点ξ,使f(b)=(1+ξ)ln(1+b)f’(ξ).

admin2022-06-04  38

问题 f(x)在[0,b]上连续,在(0,b)内可导,f(0)=0,证明:在(0,b)内至少存在一点ξ,使f(b)=(1+ξ)ln(1+b)f’(ξ).

选项

答案由题设知,f(x)和ln(1+x)在闭区间[0,b]上连续,开区间(0,b)内可导,且[(ln(1+x))]’≠0,x∈(0,b),因此f(x)和ln(1+x)在[0,b]上满足柯西中值定理的条件,故有ξ∈(0,b),使得 [*] 即 f(B)=(1+ξ)ln(1+b)f’(ξ)

解析
转载请注明原文地址:https://jikaoti.com/ti/ZKfRFFFM
0

最新回复(0)