首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
admin
2017-12-31
91
问题
设曲线
=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V
1
(a),绕y轴旋转所得立体体积为V
2
(a),问a为何值时,V
1
(a)+V
2
(a)最大,并求最大值.
选项
答案
曲线与x轴和Y轴的交点坐标分别为(a,0),(0,b),其中b=4-a.曲线可化为 y=[*],对任意的[x,x+dx][*][0,a],dV
2
=2πx.[*] 于是V
2
=2π∫
0
a
x.[*],根据对称性,有V
1
=[*]ab
2
. 于是V(a)=V
1
(a)+V
2
(a)=[*](4-a). 令V’
a
=[*]a=2,又V’’(2)<0,所以a=2时,两体积之和最大,且最大值为V(2)=[*]π.
解析
转载请注明原文地址:https://jikaoti.com/ti/ZBKRFFFM
0
考研数学三
相关试题推荐
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
已知=D≠0.求常数A,B,C,D.
设f(x)是三次多项式,且有
设f(x,y)=I∫0xye-t2dt,求
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
设平面区域D由x=0,y=0,x+y=1/2,x+y=1围成,若I1=[ln(x+y)]7dxdy,I2=(x+y)7dxdy,I3=[sin(x+y)]7dxdy,则I1,I2,I3之间的大小顺序为().
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
设有微分方程y’一2y=φ(x).其中,试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0
随机试题
孔子私学中设有学生宿舍,被称为“_______”。
女,46岁,发现左乳包块10余天,查体:左乳外上象限触及一约2cm×2cm×2.5cm质硬肿块,边界欠清,表面不光滑,腋窝触及2枚活动淋巴结。如患者行改良根治术,术后病理为浸润性导管癌,2cm×2.5cm×2.5cm大小,腋窝淋巴结4/21发现转移,E
初孕妇,平素月经规律,停经8周,尿妊娠试验阳性,超声提示宫内妊娠囊变形,相当于5周,未见胎心及卵黄囊。下一步处理是
TQC的主要特点是()。
纳税人应当自纳税义务发生之日起15日内,向土地、房屋所在地的税收征收机关办理纳税申报。()
税收是国家财政收入的重要来源,其特征是()。
在公安赔偿中,对于造成全部丧失劳动能力的,对其扶养的未成年人,还应当支付生活费。()
阅读下面材料,回答问题。20世纪.水资源短缺尤其是水质性缺水成了世界共同面对的资源危机,污水处理顺理成章成为新兴朝阳产业。污水生物处理的实质就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的。人们希望通过污水处理改善水质,又希望采
在一个袋子里放有均匀的n个白球和m个黑球.若逐一地全部取出,那么第一个和最后一都是白球的概率是().
Scientistswhobelievecellphonesaredangeroushavebeenthrowingouthypothesestoexplainawaythenegativeresults.Maybes
最新回复
(
0
)