首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设I为有限区间,证明:若f在I上一致连续,则f在I上有界,举例说明此结论当I为无限区间时不一定成立.
设I为有限区间,证明:若f在I上一致连续,则f在I上有界,举例说明此结论当I为无限区间时不一定成立.
admin
2022-11-23
9
问题
设I为有限区间,证明:若f在I上一致连续,则f在I上有界,举例说明此结论当I为无限区间时不一定成立.
选项
答案
设I为有限区间,其左、右端点分别为a,b.由于f在I上一致连续,故对ε=1.存存δ>0[*],当|x’-x”|<δ且x’,x”∈I时,有|f(x’)-f(x”)|<1.令[*],则a<a
1
<b
1
<b.由于f在[a
1
,b
1
]上连续,故f在[a
1
,b
1
]上有界.从而存在M
1
>0,对[*]x∈[a
1
,b
1
],有|f(x)|≤M
1
. 当x∈[a,a
1
)∩I时,因0<a
1
-x<[*]<δ,故|f(x)-f(a
1
)|<1,从而|f(x)|≤|f(a
1
|+1.同理当x∈[b
1
,b]∩I时,有|f(x)|≤|f(b
1
)|+1.令 M=max{M
1
,|f(a
1
)|+1,|f(b
1
)|+1}, 则对一切x∈I,必有|f(x)|≤M.故f在I上有界. 例:若令f(x)=[*],x∈[0,+∞),则易知f(x)在[0,+∞)上一致连续,但[*]可见f(x)在[0,+∞)上无界.
解析
转载请注明原文地址:https://jikaoti.com/ti/Z32iFFFM
0
考研数学一
相关试题推荐
某县扶贫办副主任甲,利用职务将一项造价20万的扶贫工程定价40万,对外招标。甲冒用A公司的营业执照、安全许可证等证明材料,参与该项目招标,又通过职权运作使“A公司”中标。之后,甲以“A公司”的名义将工程交给村民乙承建,并在工程完工验收后,利用职权将40万元
下列选项中,属于人格权且只能由自然人享有的是
某酒店建立了房客信息数据库,但因自身技术人员的疏忽存在系统漏洞。网民王某利用上述漏洞获取了该酒店房客信息,并将这些信息在网上公开,导致房客孙某因个人信息泄露遭受损失。孙某的损失应当由
在许多鸟群中,首先发现捕食者的鸟会发出警戒的叫声,于是鸟群散开,有一种理论认为,发出叫声的鸟通过将注意力吸引到自己身上而拯救了同伴,即为了鸟群的利益而自我牺牲,最能直接削弱上述结论的一项是:
在19世纪,英国的城市人口上升,而农村人口下降。一位历史学家推理说,工业化并非产生这种变化的原因,这种变化是由一系列人口向城市地区的迁移而造成的,而这种迁移都是发生在每次农业经济的衰退时期。为证明这种假说,这位历史学家将经济数据同人口普查数据作了对比。以下
有医学病例证明,饲养鸽子或者经常近距离接触容易感染隐球菌性肺炎。隐球菌既有可能存在于鸽粪中,也可能通过空气进行传播,此外,经常与隐球菌携带者接触也有可能因被感染而发病。同时有隐球菌健康携带者的存在。小张患了急性肺炎,经医生诊断为隐球菌性肺炎。如果以上断定为
设a,b,c是△ABC的三边长,二次函数,则△ABC是()。
如图13—1所示,AB为半圆O的直径,C为半圆上一点,且弧AC为半圆的1/3,设扇形AOC,△COB,弓形BMC的面积分别为S1,S2,S3,则下列结论正确的是()。
函数f(x)=x2+bx+c对于任意实数t都有f(2+t)=f(2-t),则()。
计算下列不定积分:
随机试题
试述世界发达国家二战后学制改革的基本趋势。
按要求做下列各题设f(x)为连续函数,可由∫0xtf(t)dt=f(x)+x2所确定,求f(x).
急性气管一支气管炎的X线胸片特点是
患者,病由抑郁而起,腹部结块,或左或右,走窜不定,按之略痛,脘胁不舒,暖气频频,便艰纳呆,苔薄,脉弦。证属
枳实的理气作用是()
以控制沉降为目的设置桩基时,应满足()。
公民身份的认定标准包括( )。
张先生现有资产100万元,假如未来20年的通货膨胀率是5%,那么他这笔钱就相当于20年后的()。
某市甲区居民徐某未经批准在乙区非规划区内建房,被乙区城建局勒令拆除。徐某不予理睬.乙区城建局欲申请法院强制拆除,应向()提出申请。
Somepeopleoughttodefendtheworkaholic.Thesepeopleareunjustlyaccused,abused,anddefamed--oftentermedsickorm
最新回复
(
0
)