首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2021-11-25
23
问题
设向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示。 因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
-α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
-α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://jikaoti.com/ti/YjlRFFFM
0
考研数学二
相关试题推荐
设,且存在三阶非零矩阵B,使得AB=O,则a=______,b=_______.
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设a,Β是n维非零列向量,A=aΒT+ΒaT.证明:r(A)≤2.
求函数f(x,y)=xy--y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
求极限
两个4阶矩阵满足A2=B2,则
“f(x)在点x=x。处有定义”是当x→x。时f(x)有极限的[],
AB=0,A,B是两个非零矩阵,则
随机试题
简述先富后富到共富的客观必然性。
在所有的教学方法中,最有针对性的教学方法是
配制碘滴定液时加入大量碘化钾的目的是
莱菔子配苏子、白芥子可治疗
岩石的软化系数是指()。
某地下人防工程地下2层,地下二层的室内地面与室外出入口地坪之间高差为11m。地下一层为电影院、商场和餐厅,建筑面积均大于1000m2,地下二层整层为商店,建筑面积大于20000m2。电影院设有7部通至室外的封闭楼梯间,其中大厅所在防火分区2部,其余每个防火
某公司有一职员王先生于2006年3月领取工资5000元,则他当月应缴纳的个人所得税为( )元。
—HaveyougotusedtotheChinesefood,Frank?—Yes.ButIdon’tlike______whenaChinesehostkeepsservingmethefoodIdon
【B1】【B2】
A、Letherleaveimmediately.B、Getanexperiencedmantohelpher.C、Fireherinaweek.D、Lethergetsomeprofessionaltrainin
最新回复
(
0
)