首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
admin
2018-04-18
52
问题
设y(x)是方程y
(4)
一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
选项
答案
由泰勒公式 y(x)=y(0)+y’(0)x+[*]y"’(0)x
3
+o(x
3
) (x→0). 当x→0时,y(x)与x
2
同阶,即有y(0)=0,y’(0)=0,y"(0)=0,y"’(0)=C,其中C为非零常数.由这些初值条件,现将方程y
(4)
一y"=0两边积分得 ∫
0
x
y
(4)
(t)dt—∫
0
x
y"(t)dt=0, 即y"’(x)一C—y’(x)=0,两边再积分得y"(x)一y(x)=Cx. 易知,它有特解y
*
=一Cx,因此它的通解是y=C
1
e
x
+C
2
e
一x
一Cx. 由初值y(0)=0,y’(0)=0得 C
1
+C
2
=0,C
1
一C
2
=C,即C
1
=[*]. 因此最后得y=[[*](e
x
—e
一x
)一x]C,其中C为任意非零常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/YWdRFFFM
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
A、 B、 C、 D、 A
设α1,α2,α3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
求y=2x的麦克劳林公式中xn项的系数.
求f(x,y,z)=lnx+2lny+3lnz存球面x2+y2+z2=6r2(r>0)上的最大值,并由此证明:对任意正数a,b,c成立
设f(x)为[0,1]上的单调增加的连续函数,证明
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
随机试题
SavingMoneyWhereyousaveyourmoneyoftendependsonwhatyouaresavingfor.Ifyouaresavingtobuyadictionaryorto
《声声慢》中,抒写昔盛今衰、身世变迁的词句是()
A舌下片B泡腾片C咽喉用含片D缓释、控释制剂E栓剂在药物溶解后的一段时间内,不要吃东西或饮用任何液体
设事件A与B互不相容,且P(A)>0,P(B)>0,则下列结论正确的是()。
报关员非法代理他人报关的,处5万元以下罚款,暂停6个月内报关执业或取消其报关从业资格。
2×17年4月,甲公司拟为处于研究阶段的项目购置一台实验设备。根据国家政策,甲公司向有关部门提出补助500万元的申请。2×17年6月,政府批准了甲公司的申请并拨付500万元,该款项于2×17年6月30日到账。2×17年6月5日,甲公司购入该实验设备并投入使
下列说法不正确的是()。
妄想是()。
现代教育的根本性的社会动力是()。
Ithasbeennecessarytoreferrepeatedlytotheeffectsofthetwoworldwarsinpromotingallkindsofinnovation.Itshouldb
最新回复
(
0
)